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ing the obtained predicted data using the modified method with the experimental ones

indicates a significant improvement in the predictive capability.
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NOMENCLATURE

ToT,

TU,Tu

coefficient in the velocity profile polynomia! equation (3.6).
coefficient in the velocity profile polynomial equation (3.6).
coefficient in the velocity profile polynomial equation (3.6).

local friction coefficient, 7,/ (p.U?).

epecific heat of fluid (air) at constant pressure, fi2/(s*"R),
m?/(s¥ K).

coeflicient in the velocity profile polynomial equation (3.6).

blade leading edge diameter, ff, m.

stream function.

local value of heat transfer coeflicient, Biu/(hr ft*"R), W/(m* K).
shape factor, 8, /6;.

shape factor, 8;/6,.

thermsl conductivity of fluid (air), Btu/(hr ft°R, W/(m°K).
dimensionless velocity gradient shape factor based on boundary
layer momentum thickness §,, EE-%

mixing-length or blade characteristic length (chord), ft, m.

Mach number.
Nusselt number, St.Pr.Re

thermodynamic static pressure, psia, FPa.
total pressure of inlet free-stream, psia, FPa.
Prandtl number, pC,/k.

turbulent Prandtl number, €as/ey.
local rate of heat trausfer flux, —k (%) 0; Btu/(hr f?), W/(m?).

y=

blade leading edge radius, ft, m.

Reynolds number.

momentum thickness Reynolds number, §;U/v,.
Stanton number, k. /p.C,U.

static temperature, R, °K.

total.tempera.ture ol inlet free-stream, °Rt, °I(.

longitudinal free-stream turbulence intensity, V I?/U .

ix
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6T,c
6T.m

54
EM
Ky

pruv
Heff

fluctuation in u component of velocity, ft/s, m/s.
velocity component in the x-direction, ft/s, m/s.
boundary layer edge velocity, ft/a, m/s.

gshear velocity, \/7o/p0, ft/3, m/s.

fluctuation in v component of velocity, ft/s, m/a.
velocity component in the y-direction, ft/s, m/s.
distance along blade surface, ft, m.

distance normal to blade surface, ft, m.

Greek symbols

thermal diffusivity of fluid (air), k/ (pCp) , ft*/s, m?/s.
ratio of specific heats C,/C,.

intermittency function.

velocity boundary layer thickness, ft, m.

boundary layer displacement thickness, ft, m.

boundary layer momentum thickness, ft, m.

boundary layer energy thickness, ft, m.

thermal boundary layer thickness, ft, m.

thermal boundary layer conduction thickness, k/h, , ft, m.
thermal boundary layer enthalpy thickness, ft, m.

§r /6.

dimensionless distance from the blade wall, y/6(x).
dimensionless distance from the blade wall, y/ér(=)}.

eddy diffusivity for heat, ft2/s, m?/s.

eddy diffusivity for momentum, ft2/s, m?/s.

Von Karman constant.

outer region length scale constant, mixing-length model.
dimensionless velocity (or pressure) gradient shape factor based on

boundary layer thickness §, £ 9 = _%“J_ﬁ_

dynamic viscosity of fluid, Ib/(sft), Kg/(sm).

turbulence viscosity, Ib/{sft}, Kg/(sm).

combined dynamic and turbulence viscosity, Ib/(sft), Kg/(sm).
kinematic viscosity of fluid, ft2/s, m?/s.

density of fluid, 10/ f1*, K g/m?.

laminar or tutbulent shear stress, Ib/(fts?), Kg/(ms?).
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Subscripts

adiabatic condition.

refers to critical sonic condition.

based on leading edge diameter.

edge of the boundary layer (free-stream).

effective.

gas.

wall,

static.

turbulent.

based on surface distance.

blade row inlet free-stream value.

SuEerscriBts

time averaged quantity, or mean value.

local value or derivative with respect to the independent variable

x.
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Chapter 1

INTRODUCTION

The thermal design of modern high-pressure turbine nozzle guide vancs clearly rep-
resents one of the most difficult engineering tasks in the design of any modern airctaft
gas turbine. Aerodynamic and thermal anal);'sis procedures currently available to turbine
designers have deficiencies that do not permit & priori designs that achieve design goals
without expensive experimental development iterations.

In general, internal heat transfer correlations developed from simple bench/rig tests have
proved reliable, and calculation of heat flow within the airfoil structure via finite clement
techniques is well in hand.

The external (gas-to-wall) heat transfer coefficient, however, still eludes satisfaclory pre-
diction because of a highly complex and interactive external flow field environment. In
addition to the sharp gradients in the gas temperature distribution, the airfoil row is
characterized by a flow field reflecting passage Mach Number (M) variations from the
low subsonic levels (M < 0.15) to the transonic range (M > 1.0).

The flow field is strongly influenced by viscous cffects in the near wall region where, in
turn, heat flow is alternately governed by molecular diffusion, laminar conveclive trans-

~ port, turbulent shear transport, or combinations thereof.
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Although the character of the boundary-layer over the greater radial extent of most
airfoils is nominally two-dimensional {2-D), local boundary-layer behavior (and, hence,
surface heat transfer rate) is strongly influenced by complex and interactive mechanisms

summearized in Table (1.1).

Table (1.1): Basic mechanisms that influence gas-to-blade heat transfer.

Mechanism

Nature/Manifestation

Transitional Behavior

Transition from laminar/molecular diffusion transfer
to tutbulent shear transfer. Direct effect on heat
transfer

Free-stream tutbulence

Temporal small-scale combustor or blade-passing in-
duced stream velocity fluctuations. Influences produc-
tion end diffusion of boundary-layer turbulence and
boundary layer stability ( transitional behavior ).

Aijrfoil surface curvature

Influences boundary layer turbulence and dissipa-
tion. Affects boundary layer stability. May produce
Goertler vortices (periodic large-scale disturbances
slong concave surface) with consequent strong effect
on_heat_transfer

Airfoil surface roughness

Directly influences boundary layer turbulence produc-
tion and stability.

High mainstream velocity ac-
celeration/deceleration

Direct influence on boundary layer thickness, profile
shape, and stability. Controls turbulence production
(deceleration) and dissipation (acceleration).

Flow separation and reattach-
ment

Affects local character and thickness distribution of
the boundary layer. Produces sharp local hent transfer
rate increases

Distributed surface injection

Strong influence on turbulence production in injection
region. Directly affects near-wall temperature profile
and downstreamn boundary layer profiles and thick-
1iess

Shock/boundary layer inter-
| action

Causes boundary layer separation end consequent ef-
fects
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Presently, a variety of prediction techniques are used to solve this complex problem
with varying degrees of success. The simpler, well established correlative techniques have
met with some success sufficient to provide initial design predictions [I]. However, only
recently have the more powerful integrel and finite difference solutions of the complete
time-averaged boundary layer equations shown real promise [2-16].

Reinforced by carefully derived empirical turbulence modeling, the numerical techniques
[5-16] have yielded reasonable predictions of the effects of strong acceleration / decelera-
tion where the external flow field and state of the boundary layer are well defined. On the
other hand, integral techniques [2-4] continue to show disagreement bcl.weenl predicted
end measured heat transfer coeflicient distributions on airfoils.

For non-film cooled airfoils, deviation of heat transfer predictions by integral methods
from true or experimentally indicated levels can most probably be attributed to one or

more of the following analytical deficiencies :

" 1. Lack of precision in the prediction of the inviscid flow field around the airfoil,

particularly in the forward highly accelerated stagnation region .

2. Uncertainties regarding the surface location at which transition is initiated on the

suction surface as well as the surface extent of the transition zone.

3. Uncertainties regarding the influence of free-stream turbulence on local heat transfer

rates in the laminar region found over the pressure surface, as well as on initiation

and extent of the transition region found on the suction surface.

4. Limited understanding of the role of airfoil surface curvatute on turbulence prodne-

tion/dissipation and boundary layer stability.
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Even if consideration is restricted to the nominally two-dimensional midspan region
of the blade surface, the complex environment desctibed above suggests the need for an
improved design approach with sufliciently enlightened transition region and turbulence
intensity modeling to accommodate the several interactive influences described previ-
ously.

A requirement is posed by the clear need to confirm, through realistic cascade experi-
ments, that the physical details of the viscous flow field are in fact correctly modeled.

While a number of experimental turbine vane heat transfer studies have been reported
over the past 35 years [17-21], the applicability of these data to modern Jow solidity, highly
loaded vane rows is limited by conservatism in profile shape and/or Mach number range
[17,19] or by incompleteness in availability of data [17,18,19,20,21].

The experimental studies cited above were not conducted under conditions that en-
sured coincident similarity of the principal independent aero-thermo parnmeters (Mach
number, Reynolds number, wall-to-gas temperature ratio and turbulence intensity) to
those existing in current generation core engines.

The objectives of this study are as follows :

1. To assess the capability of currently available integral method for predicting nonfilm-

cooled sitfoil surface heat transfer coefficient distribution in a two-dimensional flow

field.

2. To incorporate several transition start, length and path wodels and turbulence
) g 1

viscosity models to this integral method.
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3. To acquire additional sirfoil heat transfer experimental data (From Literature) at
simuleted engine conditions and verify ulilizing this acquired literature data that

the incorporated models have achieved the desired results.

The results of an experimental study of aerodynamic (surface velocity) and heni trans-
fer distributions over the surfaces of a highly loaded, low solidity modern tutbine nozzle
guide vane designs were kindly supplied by Dr. D.A. .Nealy, Chief of the heat transfer
section, Detroit Diesel Allison, General Motors Corporation [22].

The supplied experimental data set were conducted in moderate temperature, three vane
cascades under steady-state conditions. The principal independent parameters values (
Mach number A, Reynolds number Re, turbulence intensity Tu, and wall-to-gas tem-
perature ratio T,,/T,) were consistent with actual engine operation.

The serodynamic configurations of the data set emphasize fundamental diffcrences in the
character of the suction and pressure surfaces velocity distributions and the consequent
eflect on surface heat transfer. Thus this data set provide a data base covering a range of
operating conditions and geometries for testing the predictive capability of the integral
prediction method.

Chapter 2 briefly reviews some of the integral and finite-difference tools found in the
literature for predicting non-film cooled airfoil sutface heat transfer coefficient distribu-
tion.

In Chapter 3 the integral method used in this study is laid cut and explained in detail.
This integral method is capable to calculate the laminar and turbulent convective heat
transfer coefficients and boundary layer momentum thickness over the surfaces of solid

turbine blades .
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In Chapter 4 several transition region models (transition start, length and path) and
turbulence viscosity models are introduced in order to incorporate them with the inte-
gral method and recommend the best combination. Futthermore, since the suction and
pressure surfaces have a fundamental diflerences in the character of the boundary layer
developing on them, the author of this study has modeled the boundary layer found on

these two surfaces by two diflerent approaches, as follows:

1. On the suction surface of the blade, laminar, transitional, and turbulent flow regions
do exist. The laminar and fully turbulent regions sre computed as explained in
Chapter 3, while the transition region is modeled using the transition start, length,

and path models found in chapter 4.

2. On the pressure surface of the Llade, the flow is characterized to be in transitional
state from the leading to the trailing edge. However, modeling this transitional
behaviour is different than modeling the transition region on the suction surface.
An effective viscosity formulation was included to model this transitional behaviour.
This formulation permitted the boundary layer on the pressure surface to be treated
as & laminar one but with the calculations being based on an efleclive viscosity

formed by combining the dynamic (laminar) viscosity to the turbulence viscosity.

In Chapter 5 various single and/or combined model solutions and results are discussed

and evaluated using experimental data in order to recommend the best combination.

Finally, conclusions and recommendations are given in Chapter 6.
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Chapter 2

BACKGROUND AND
LITERATURE REVIEW

2.1 Introduction

One of the most critical inputs to heat transfer cooling design calculations for turbine

pirfoils is the prediction of the gas-side heat transfer coefficient distributions. Also, thé
heat fluxes form the boundary conditions in the conduction analysis neccssaty to predict
the blade temperatures. For this reason, many research efforts have been aimed at im-
proving understanding of the flow and heat transfer in the turbine components.
The blade temperatures may of course be obtained experimentally. Such a course of ac-
tion is costly, and it is too time consuming to use in the iterative design and optimization
process of turbine blades. An analytical method capable of giving accurate predictions
of the surface heat transfer coefficients distributions over gas turbine blades wounld be a
more appropriate assistance to engine designers and would also help to reduce the extent
and cost of development testing required in an engine design.

The general approach used in the calculation of turbine airfoil heat transfer cocfli-
cients is based on two-dimeusiout.l‘l boundary layer calculation methods using either finite

difference or integral formulations.
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All approximate integral methods have the common feature that, instead of satis{ying
the partial differential equations of boundary layer motion, they only satisfy a mean value
taken over the equation of motion, as expressed physicelly by the momentum integral
equation. In addition the boundary conditions et the wall and at the outer edge of the
boundary layer are satisfied.

On the other hand, finite difference methods, sometimes called the field or differential

methods satisfy the boundary layer equations at each node of the computational domain.

2.2 Integral methods

The large number of integral methods that are found in the literature are generally
classified according to the type of flow ( laminar or turbulent) they are applicable to, the
number of motion equations and relations that are used to obtain a solution, and to the
boundary layer they solve (velocity or thermal boundary layer).

A complete summary of the integral methods found in the literature is outlined by White
[23].

Nealy [2], developed en integral method that solves a single ordinary differential equa-
tion (the integral form of the thermal energy equation). This method perhaps represents
the simplest type of dillerential equation boundary layer methods, which might he used
to determine heat transfer. The method is capable of solving both laminar and turbulent
flows . For laminar flows, local similarity is assumed at each computational station, and
therefore, the results obtained from exact solutions may be used. For turbulenti flows,
Nealy assumed that local equilibritm exists and the results of zero-pressurc gradient (flat

plate) are used to develop an expression for the turbulent Stanton number. Furthermore,
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Nealy treats transition from laminar to turbulent flow as a single computational step
process based on an arbitrary specification of occurrence. Because of these assumptions,
Nealy’s method have questionable range of application.

For the laminar velocity boundary layer, Pohlhausen [24] used the momentum integral
equation together with a fourth order velocity profile to derive a non-linear first order
differential equation describing the variation of the momentum thickness (6,) with surface
distance (z).

For the laminar thermal boundary layer, Squire [25]) adopted a standard similar ve-
locity and temperature distributions across the boundary layer (the Blasius distribution)
and combined the momentum integral equation and the heat flux equation. The resulting
equation is solved for the thermal boundary layer thickness {and hence the heat transfer
coefficient) using the method of successive approximations. 41 4 0 0 3

Truckenbrodt {26] adopted Ludwieg and Tillmann [27] and Rotta [28] investigntions
on the theoretical properties of turbulent flows, particularly of the wall shear stress and
the energy loss in the boundary layer and developed a method for the calculation of the
momentum thickness which is valid for both laminer and turb?nlent flows. The interesting
point in Truckenbrodt method is that he followed a somewhat different path in that he
mede use of the energy integral equation and not of the momentum integral equation
to solve for the momentum thickness. This energy integral equation is sometimes called
the mechanical energy equation, which is merely the momentum equation multiplied by
the velocity component u, that is, it changes forces into the rate of work done by those
forces.

Gauntner and Sucec [3] described a method for calenlating Iaminar, transitional and
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10

turbulent convective heat transfer coefficients over the surfaces of turbine vanes. On the
leading edge of the blade they used the heat transfer coefficient correlation for a cylinder
in cross flow :

h =114 Re}® pro* d

D

191\’ , .
1-15 0° < |8 <80 (2.1)

In the laminar region, Gauntner and Sucec [3] corrected the flat plate correlation for heat

transfer coefficient to account for pressure gradient, as follows:

hy = Flam ReX® Pr1/? (-’5) (2.2)

T

Where:

Flam = Nu, [ Pr}/® Re?"
-Flrxm Prlfa = Figm

The Fi,m correction is evaluated as a function of the local Euler number (—‘;ﬂ—_’;’ / "’—’;U—,)
and the local ratio of T./T,,. The values of Figm, or Nu./Red* | are approximated by
solutions for wedge-type flow. As Gauntner and Sucec [3] indicates these wedge solutions
may be used to approximate heat transfer coefficients along any arbitrary profile. The
value of the Euler number at any position along the profile determines the corresponding
wedge for which, at the same distance z from the stagnation point, the heat transfer on
the wedge and the arbitrary profile are assumed to be equal.

The technique followed by Gauntner and Sucec [3] for predicting tutbulent local convec-
tive heat transfer coefficients is based on the approximate integral solution of the energy
equation given for the first time by Ambrok [1]. The solntion of this thermal boundary
layer equation takes into approximale account the ellects of thermal history, free stream

velocity variation, and free stream density variation.
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Gauntner and Sucec arranged the energy integfal equation into a form involving the local
enthalpy thickness §r.en.

dbpen , [Ldpe 14U 1 d(T,-T) he

Friarem = 6en=
iz lmde " Ude T(To_T,) da Ten ™ peCoU

=5t,  (23)

As Gauntner and Sucec suggested, if a relation could be found between St. and 87 en,
equation (2.3} could be solved for ér.n 28 a function of z and hence h. as & function of
z. The above authors used a flat plate turbulent constant property relation to relate St.

and 87.en, as follows :

Nu,
St = Te “Pr = 0.0206 Pr~/® Re;%? (2.4)
and,
Sty = BYU-m (1 = )~/ germ/(i=m) (2.5)

Where for turbulent flow B = 0.0296Pr~*/? and m = 0.2.

Furthermore, Gauntner and Sucec proposed that St, in equation (2.3) is only function
of Res, . but otherwise independent of body shape, surface temperature variation, free-
stream velocity and density variation. The above authors then substituted equation
(2.5) into equation (2.3) and the resulting expression was integrated. Their final result
for turbulent flow is:

0.0296Pr=2/* (T, — Tu)"™ (1./Ty)"*"
' 1251 %2
" U TQ—T‘, fUJ o
{f &_L______.)__dz + [00298)’,.-—1/:: (P T ) | (Tg —Tw)] }

Ttran,end fLEY

Sty = (2.8)

The factor (T,/T,)">*® in the numerator of the right side of equation (2.6) is the tem-
perature ratio correction for property variation across the boundary layer according to
Crawford and Kays [29] for %’L < 1. The iemperatture dependent fluid properties are then

evaluated at the local free-stream static lemperature 7.
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For the transition region, Gauntner and Sucec uses the same methodology as in the turbu-
lent region but instead of using equation (2.4), they used an empirical expression which

is analogue to equation (2.4) and applicable in the transition region. This correlation
is obtained from the experimental heat transfer results obtained by Ambrok [4] in the

transition region along e flat plate.
Nu, = 0.000386 Re!"/® (2.7)

Assuming again the form of equation (2.5), with Pr = 0.7, the values B = 0.000435 P~/
and m = —1/9 result. Gauntner and Sucec used these values to derive an expression for

the transitional heat transfer coefficient which is similar to equation (2.6). That is,

0.000435 Pr=%3 (T, — T, ) "' (1. /T.,)**"
-0.111
{ ;rnn LU@“%T—"):‘-’—dx -|- [ 1,111 (P!UGT!en) (2_:! _ Tw )] 0.9}

0.000435 Pr-373 He

St, =

(2.8)

To use equations (2.6) and (2.8) it is necessary to evaluate the quantity (ﬂ—%&:"—) at
z, (here z, denotes either the start of transition j,qn or the end of transition 24.4nend)-

Since ér., is continuous at z, (between laminar and transitional regions and between

transitional and turbulent regions) it is possible to evaluate &7 ., by rearranging equation

% B Blm h, 1-1/m .
’Lc 2, - 1 -_ 1 P;_-CPU ( . )

At z,, the values of m, B and h, are obtained from the laminar or transitional ex-

(2.5), as follows :

pressions. They are used in equations (2.8) and (2.6), respectively. For equation (2.6),
B = 0.000435Pr=%/3 and m = —1/9. Where as for equation (2.8), B = 0.332/r~%/? and
m = 0.5 when Fiam = 0.332 in cquation (2.2).

Gauntner and Sucec predicted the siart of transition using Seyb criterion [30] and set
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transition end at a momentum thickness Reynolds number Res, = 360.

A method proposed by Head [31] makes use of a new idea. According to this, there
ought to exist a functional relationship between the shape factor (-"-g—f*) and the mass
flow entrained by the boundary layer per unit length from the outside. Ilead used this
relation together with the momentum integral equation and the Ludwieg and Tillmann
[27] coefficient of friction (C}) law to solve for the three turbulent boundary layer un-
knowns, 8;, Hyy = %, and Cj.

As it will be seen in the next chapter, the method used in this study to calculate the
heat transfer coefficient around the laminar part of the blade profile involves first solv-
ing the momentum equation to establish the velocity field and then solving the energy
equation. A still simpler approach, blxt one introducing a greater degree of approxima-
tion, involves a solution to either the momentum or the energy integral equation, but
not both. Eckert [42] proposed a scheme based on the solution of the energy-integral
equation alone. In this scheme, Eckert assumed that the rate of growth of any of the

thermal boundary-layer thicknesses 67 is a function of local parameters alone, that is :

2'4_55 = (&r,U U Pr)

dz PrA
As Eckert indicates, any of the thermal boundary-layer thicknesses might be used in the

above equation, such as the conduction thickness 6., where :

By dimensional analysis, Eckert [42] shows that the variation of ér,. can be expressed in

non-dimensional form :

v da’

482 52 dlS
Ve g ("'C— Pr) (2.10)
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The essence of Eckert method lies in the assumption that the function f for an arbi-
trary variation of free-stream velocity is the same as for the family of wedge flows. The
latter (i.e. wedge flows solutions) are already evaluated using the similarily solutions.

Table (2.1), tabulates, for each particular value of m (where m = 5—:‘%, v = (° for flat
-1/2

plate, 4 = 180° for 2-D stagnation point) the corresponding wedge solution Nu,ReZ

obtained from solving the boundary layer energy equation.

Table (2.1): Values of Nu, ReZ'/? for various wedge flows, heat transfer lo the laminar

boundary layer (U(z) = Cz™), Pr = 0.7, [29].

m 0.0753 | 0.0 | 01110333 ] 1.0 4.0
Nu,ReZ'/2 | 0.242 | 0.292 | 0.331 | 0.384 | 0.496 | 0.813

Thus,
Nu Re;'* = G
From which h, o« U3~/
Employing U(z) = Cz™ (wedge condition) and by, = 7:_:' , then the following expressions

can be developed for the wedge solutions :

U déi.. l-m

o cr (2.11)
and,
.dU m
ST (2.12)

Thus for Pr = 0.7, a plot of equation (2.10) can be prepared from the data in table (2.1),

as shown in figure (2.1},

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



15

Eckert proposed to solve equation (2.10) numericelly for any arbitrary free-stream velocity
variation employing such a plot of the wedge solutions for the function f .

Such a numerical calculation would be tedious, but as seen from figure (2.1), a very good
approximation is obtained by replacing the exact wedge solutions curve with a linear
approximation which leads to a simpler integration procedure.

For Pr = 0.7, the following linear relation fits the wedge data exactly for the stagnation
point case and for the case of a flat plate, it is a fair fit in between but begins to depart
markedly for strongly decelerating flows, although boundary-layer transition limits the

curve in this direction,

U dé}. 8% dU
=1 = 11.68 - 28775 —— (2.13)

Equation (2.13) may be integrated and thus reduced to :

11.68v f; U'®Tdz
6%& = Ug.sr (2-14)

Equation (2.14) can now easily be evaluated for any desired variation of U with =, so the
conduction thickness, and thus the local heat transfer rate can be readily calculated .

Thus with 67, = ,-;".-, then equation (2.14) becomes :

1.435
hy = kU (2.15)

VI11.6801/2 [f= U197 dz]'/?

Introducing the definition of the Prandtl number, ie. Pr = E%’—, then,

C U1.435
he = =i o (2.16)
Pr/11.6801/2 [ [5 U187 dz]
For air, Pr = (.7, then equation (2.16G) becomes :
= 8 Gl (2.17)

pii? UJ UI'”d:c]”z
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Or using the definition of the Stanton number (St., = p—é‘:g), then,

0.418 /2 o438
= [y U‘-“d:n]ln

St, (2.18)

2.3 Finite-difference (differential) method

In this class of methods a grid, usually rectangular, is placed on the flow field, and
the flow quantities are to be calculated only at the nodes of the grid. Algebraic equations
at each node are obtained from the partial differential equations by approximaling each
derivative by an eppropriate difference. The boundary conditions must also be incorpo-
rated to ensure that there are as many equations as unknowns. Obviously, there are a
tremendous number of different algebraic formulations that can be used by the indicated
procedures. The objective, however, is to ensure that the algebraic difference equations
can be solved with reasonable efficiency and accuracy while representing acceptable ap-
proximations to the flow quantities. The above mentioned points have been studied in
great detail and lead to the theory of stability and convergence of differcnce schemes.

The two-dimensional boundary layF:r probiem is a parabolic phenomena, that is, when
the differential equation is replaced by a finite difference one, the value of the dependent
variable such as velocity, enthalpy or other trensported entity at a nodal point is aflected
by the dependent variable values at lower z and same 2 nodes, but not by those at
higher = nodes. Then the solution can be aflected by a single down-stream sweep, using
the well-known tri-diagonal matrix algorithm. Thus in two-dimensional boundary layers,
down-stream cannot affect up-stream.

Several finite-difference methods and/or programs are found in literature. A complete

survey of the finite-difference methods found in the literature is outlined by White [23].
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Finite difference programs found in the literature differ {from each other mainly by the
numerical techniques used to convert the boundary layer partial differential equation to a
finite difference one, the kinds of turbulence models used to obtain dosure (i.e. defining
the turbulent shear stress and turbulent heat flux) and by the choice of coordinate system
and mesh sizes. When defining the shear stress, some methods used some sort of eddy-
viscosity hypothesis (i.e. mixing-length formulations), while others use the turbulent
kinetic energy equation. Since the turbulent kinetic energy equation contains three new
variables (i.e. turbulent kinetic energy 3:-, dissipation ¢, and diffusion terin v'p’), methods
using this equation must search for further empirical correlations. Several methods found
in [23] choose a relation between r and 1;— plus an empirical length- scale correlation for
dissipation € and diffusion v'p’ terms.

Herring and Mellor [7] describes a finite-difference computer program which performs
a numerical integration of the equations of motion for a compressible two-dimensionsal
boundary layer. The basic numerical scheme used in their program is described as an im-
plicit, Crank-Nicholson method result;ng at each station in an ordinary differential equa-
tion. The ordinary differentizl equation is solved using a Gaussian elimination method
to solve the characteristic matrix. Boundary layer calculations may be carried out for
both laminar and turbulent flow for arbitrary Reynolds number and [rce streamn Mach
number distribution on planar or axisymmetric bodies with wall heating or cooling, wall
suction or blowing and a rough or a smooth wall. Herring and Mellor [7] allow transition
to be modeled by speciflying the start and exlent of transition as input.

Cebeci and Smith [12] developed a finite-difference program of the "mean ficld closure

type”, that is the fluctvation terms in the momentnm and energy equations are specified
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in the turbulence model in terms of mean flow parameters only. A full description of the
program is given in Cebeci and Smith [12]. It is applicable to both laminar and turbulent
compressible boundary layers in two-dimensional and axisymmetric flows. The continu-
ity, momentum and energy (total enthalpy) equations, in mass averaged form, are solved
in terms of a transformed system of coordinates specified by the Mangler, Levy-Lees
transformation. The very efficient Keller’s Box numerical method, described by Keller
and Cebeci [13], is used. In this program, an eddy viscosity is calculated using Prandtl’s
mixing length. This eddy viscosity is then related to the Reynolds stresses and the mean
velocity gradient. The fluctuations in total enthalpy is calculated from the mean total
enthalpy gradient by applying Reynolds analogy in the form of a constant total turbulent
Prandil number (which allows the determination of a turbulent thermal conductivity).
In the Cebeci and Smith [12] program the location of the transition point is specified as
an external input by the user.

Patanker and Spalding [t4,15,16] developed = finite-difference schemc and program
they called Genmix IV. Their scheme is a general, implicit numerical roarching proce-
dure for the solution of parabolic partial differential equations with special reference to
those of the boundary layer. The main new idea in this scheme lies in the choice of a
grid which adjusts its width so as to conform to the thickness of the boundary layer in
which significant property gradients are present. The non-dimensional stream function
is employed as the independent variable across the layer.

Rodi and Scheuerer [32] incorporated the Patanker and Spalding program [14] with
an extended version of the widely nsed k-¢ turbulence model of Jones and Launder [33].

Computationally, the method solves Lthe same two governing partial differential equa-
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tions ( streamwise momentum and total enthalpy) plus two additional partial differential
equations (turbulent kinetic energy, k, and isotropic dissipation rate, ¢, equations). The
last two equations represent the turbulence model or closure assumption for defining the
turbulent shear stress or viscosity. The turbulent heat flux is modeled using the essump-
tion that the eddy diffusivity for heat is equal to the eddy viscosity (i.e. eddy diffusivity
for momentum) divided by the turbulent prandtl number teken equal to 0.86. Rodi and
Scheuerer used their method of calculation and applied it to various turbine blade situa-
tions for which Daniels and Browne [34] have carried out measurements.

The conclusions drawn from the predictions of Rodi and Scheuerer [32] is that the dis-
tribution of the heat transfer coefficient on the suction side of turbine blades is governed
mainly by the onset of the laminar-turbulent transition. This process in turn is con-
trolled by the local velues of the pressure gradient and free-stream turbulence intensities.
Surface curvature, variable fluid properties and surface roughness (if the blades are not
well finished) exert only a negligible influence on the external heat transfer. Discrepan-
cies between prediction and measurements on the suction side occur in the transitional
region, where Rodi and Scheuerer method yields a somewhat faster transition than what
is observed in the experiment.

On the pressure surface, Rodi and Scheuerer (32] essumed that transition usually starts
very near the leading edge because of the high relative turbulence intensity on this side
of the blade. After this early start, there is a balance between free-stream turbulence
and pressure gradient eflects, the former tending to promote and the latter to retard the
transition to fully turbulent flow. According to Rodi and Scheuerer, due to the relami-

narizing effect of the favourable pressure gradient on the pressure surface, the boundary
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layer does not become fully turbulent on this surface.

2.4 Parameters affecting airfoil heat transfer

Some of the important geometric and flow field characteristics often sssociated with
the accuracy of predicted heat transfer coefficients for solid surface turbine sirfoils in a

gas turbine environment include :
1. Laminar, transitional, and turbulent states.
2. Free-stream turbulence effects.
3. Effects of strong nonequilibrium conditions (favorable/adverse pressure gradients).
4. Surface-to-free-stream temperature ratio effects.

5. Surface curvature effects {convex/concave).

6. Body force eflects.

7. Laminarization or reverse trensition process effects.
8. Surface roughness effects.

9. Rotation effects.
10. Flow separation with and without reattachment.

The effects of mainstream turbulence on turbine airfoil heat transfer were studied
by Lander [20] for a range of maiusttcam turbulence intensities of 6 fo 22% on the

suction surface of & vane. Similarly, Turner [19] and Kan [35] investigaled the effects
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of mainstream turbulence on turbine blade heat transfer in a stationary cascade and
Brown and Burton [21] conducted similar studies in & wind tunnel with a curved surface
simulating the suction surface of a turbine blade. The mainstream turbulence in the
latter investigations ranged from 0.5 to 9%. The above experimental studies led to the

following conclusions :

1. Mainstream turbulence influences the start of transition from a laminar to a tur-

bulent boundary layer with increased turbulence promoting early transition.

2. Turbulence intensity has a marked effect on laminar boundary layers ( in particular
on the pressure surface), increased turbulence results in an increased heat transfer
coefficients in the laminar boundary layer region found on the pressure surface of

turbine aitfoils.

3. Mainstream turbulence level has little effect on the heat transfer coeflicienls in the

turbulent boundary layer region.

It is well known that favourable pressure gradients suppress and that adverse pres-
sure gradients amplify turbulence in a boundary layer as reported by Schubauer and
Skremstad [36). In addition it has been shown by various workers including Launder
[37] and Patel and Head [38] that strong favourable pressure gradients can even relam-
inarize a fully turbulent boundary layer. Launder [37] suggests that when the pressure
gradient parameter, v‘%%, exceeds 2x 10-° laminarization eflects will become significant.
Furthermore, apart from the free-stream tusbulence, the longitudinal pressure gradient

exeris the largest effect on transilion and hence on the distribution of the heal transfer

coeflicient.
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The effect of streamwise surface curvature is to stabilize the boundary layer on the
convex (suction) surface and to destabilize the boundary layer on a concave (pressure)
surface, Schlichting [24]. The destabilizing effect of centrifugal forces on the concave wall
induces an instability which results in Goertler vortices with axes in the same direction
#s the main stream flow. Shivaprasad and Ramaparian [39] conducted investigations
on mildly curved surfaces (boundary layer thickness/ wall radius of curvature = 0.01).
Their results showed that turbulence intensities in the boundary layer are reduced on a
convex wall and enhanced on a concave wall, and thus heat transfer on the concave wall
is increased and that for the convex wall is decreased.

It is believed in this present work that a careful modeling of the distribution of the free-
stream turbulence intensity along the blade surfaces automatically modcls the effects of
surface curvature.

Rodi [32] shows that turbine blades has small ratio of boundary layer thickness to wall
radius of curvature and thus centrifugal effects are negligible (i.e. surface curvature ef-
fects are small).

Johnston [40] reviewed the effects of rotation on boundary layers in turbomachinery
rotors. He observed that rotation tends to stabilize the boundary layer on the suction
gide and destabilize the boundary layer on the pressure side of turbinc blades. He also
concluded that rotational effects on the heat transfer level in axial flow turbine blades

are negligible except in separated flow regions.
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Chapter 3

INTEGRAL METHOD
FORMULATION

3.1 Introduction

The following method is used to calculate convection heat transfer coeflicients and
adiabatic wall temperatures along the blade profile. Static temperature and pressure are
calculated outside the boundary layer {rom channel flow theory [41] using the following

equations :

_ 71, Ulz),
7, = Tt - (LG (3.1)
A= R (32)

2y 1/2
U, =[—RT,
- AT

Where, U,, is the critical speed of sound corresponding to the sonic state of a perfect gas
(M = M, =1).
Cp, t, Pr and p (characteristics of the fluid ) are entered as tables in the integral method
Fortran program for the appropriate range ol temperatures and pressures.

The calculation of convection heat-transfer coellicients and adiabatic wall tempera-

tures is then carried out on the following assumptions :
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1. On the suction side, the boundary layer is laminar from the stagnation point to
the heighborhood of the point of minimum pressure. From this latter point on, the

flow is transitional, then fully turbulent .

2. On the pressure side, the boundary layer is either laminar or transitional from the
neighborhood of the stagnation point to the neighborhood of the trailing edge. (i.e.

fully turbulent flow regime might occur near the trailing edge.)

The adiabatic wall lemperatures are obtained from the following equations [24] :

For laminar boundary layer ;

Toa = T, + (To — T,)Pr5 (3.3)
and for turbulent boundary layer ;

Toa = T, + (T, — T,)Pr} (3.4)

On the leading edge and in the laminar region of the boundary layer, Pohthausen [24]
approximate integral method which is based on the momentum integral equation is used
for the calculation of the velocity field. The laminar thermal! boundary layer is calculated
by Squire’s method {25} for the calculation of heat transfer on a cylinder and on a flat
plate with longitudinal pressure gradient. In the turbulent part of the boundary layer,
the Von Karman formula for heat transfer in turbulent flows is used.

The theories of Schlichting [24) and Truckenbrodt [26] are used for the determination of

the transition point and the computation of 2 two-dimensional turbulent boundary layer
momentum thickness. Furthermore, the above mentioned theorics where incorporated
into a computer program by [4].

The above mentioned methods and theories will be described in the following sections.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



25

3.2 The laminar region of the boundary layer (Ve-
locity boundary layer)

Choosing & system of coordinates in which x denotes the arc measured along the
wetted wall (blade surface) end y denotes the distance from the wall ( figure (3.1)). The
basic equation of the momentum theory is obtained by integrating the equation of motion
with respect to y from y=0 at the well, to a cestain distance H(x) which is assumed to
be outside the boundary layer for all values of x .

With this notation the momentum integral equation has the following form :

ds dU
222 =~
U + (26, + 6,)U == (3.5)

The derivation of this momentum integral equation is outlined in Appendix A.
Equation (3.5) gives an ordinary differential equation for the boundary layer thickness,
provided that a suitable form is assumed for the velocity profile. This allows the calcula-
tion of the momentum thickness (6, ), the displacement thickness (§;) and the shearing
stress at the wall (7,).

The essumed velocity profile has to take into account the no-slip condition at the wall,
as well as the requiren.lents of continuity at the point where this solution is joined to the
potential solution. Furthermore, and in the presence of a pressure gradient, the velocity
function must admit the existence of profiles with and without a point of inflexion cor-

responding to their occurrence in regions of negative and positive pressure gradients.

Finally, in order to be in a position to calculate the point of separation with the aid
of this approximate method, the cxistence of o profile with zero velocity gradient at the
wall, (%f)'-‘:“ = 0, must also be possible.

Assuming a polynomial of the fourth degree for the velocity profile in terms of the
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dimensionless distance from the wall = 3&—5, ie.

= f(n) = an + bn® + p® + dn° (36)

e

in the range 0 < 7 < 1, whereas for 7 > 1 it is simply assumed that 7 = 1.
As noted before, the boundery layer should join the potential flow at the finite distance
from the wall y = é(z).

In order to determine the four free constants, 8, b, ¢ and d, the following four boundary

conditions shall be prescribed :

y=0,u=0,u5;;=;§m——=—(fzm— . (3.7)
2
y=6,u=U,%;£=[},g—£=O (3.8)

These requirements are sufficient to determine the constants a, b, ¢ and d, because the no-
slip condition at the wall is implicit in equation (3.6). The second condition in equation
(3.7) which is satisfied by the exact solution as seen from equation (A.1} in Appendix A
is of particular importance. It determines the curvature of the velocity profile near the
wall and makes sure that there is no point of inflexion in the velocity profile in regions
of decreasing pressure. Furthermore, regions of increasing pressure contain points of
inflexion as required by the exact solution (at point of inflexion %%# = 0).

Introducing the dimensionless quantity,

A= —— 3
v dz (3.9)

and using the above boundary conditions then the following expressions may be obtained

for the coefficients in equation (3.6),

A A
24— ; b=—= ; c=-24+= ; d=1-
a +6 ; 2 c +

—
(o> et
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and hence for the velocity profile :

A
*;} = F(n)+ AG(n) = (21— 20" + 1) + 5{n = 30" + 30" — ") (3.10)
Where;
F)y=2—-2"+n*=1-(1-7)°1 +n) (3.11)
1 1
Gln) = 5(n = 37" +3n° - 7') = gn(l =)’ (3.12)

It is easily recognized that the velocity profiles expressed in terms of n = 3{;—), consti-
tute a one-parameter family of curves, the dimensionless quantity A being a shape factor.

The dimensionless quantity A which may also be written as,

aBdU 4P 8
T vde dzpUfs

can be interpreted physically as the ratio of pressure forces o viscous forces.

In order to obtain a quantity to which real physical significance can be ascribed, it
would be necessary to replace § in the above definition by a linear quantity which itself
possesses physical significance, such as the momentum thickness §;. This will be done
later in this section.

Velocity profiles for various values of A ere shown in figure (3.2). The profile which
corresponds to A = 0, is obtained when % = 0, ie. for the boundary layer with no
pressure gradient (flat plate at zero incidence). The profile at separation with %:‘)FO =0
(i.e. with @ =0), occurs for A = —12 .

It will be shown later that the profile al the stagnation point corresponds to A = 7.052.

For A > 12, values of # > 1 occur in the boundary layer, but this must be excluded in
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steady flow. Since beyond the point of separation the present calculation based, es it is,
on the boundary-layer concept, loses significance, the shape factor is seen to be restricted
to the range —12 < A < +12.

Before proceeding to calculate the boundary layer thickness §(x) from the momentum
theorem, it is now convenient to calculate the momentum thickness é;, the displacement
thickness §, , and the viscous shearing stress at the wall 7,, in terms of the boundary
layer thickness §(z).

The displacement thickness &, and the momentum thickness §;, of the boundary layer

are defined by :

§ U = f,, :(U — u)dy (3.13)

and,

85U = f °°0 w(U — u)dy (3.14)
y:

Using equations (3.13) and {3.14) , together with the spproximate velocity profile equa-

tion (3.10), then the following equations may be obtained,

% = fﬂ;[l — F(n) ~ AG(n)|dn (3.15)
6?’ = f,:_.u“‘" (1) + AG(m)](1 — F(n) — AG(m)}dn (3.16)

Computing the definite integrals with the aid of the values of F(n) and G(y) from equa-

tions (3.11) and (3.12), then

Ao Fe(E o) (3.17)

=24 - 3.1
+3 (3.18)
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In order to determine the still-unknown shape factor A(z) and, hence, the function
§(z) from equation (3.9) , it is now necessary to refer to the momentum integral equation

(3.5), which may be expressed in the following dimensionless form when mulliplied by

(%)

§.U'8 1.6

+ (2 + 6_2 (3.19)

U6, 6,
v v pU

in which the boundary-layer thickness § does not appear explicitly. This feature is the
corner stone of the momentum integral equation method. It is, therefore, natural to begin
with the calculation of & from equation (3.19) and then to deduce § from it with the aid

of equation (3.17). For this purpose, it is convenient to introduce a second shape factor,
K=22" (3.20)

which is connected with the momentum thickness in the same way as the first shape
factor A was connected with the boundary-layer thickness & in equation (3.9).

In addition, the following is defined,

82
Z= ™ (3.21)
so that;
U |
K= Z&; | (3.22)

It is seen from equations (3.9), (3.20), and (3.17) that the shape factors A and K

satisfy the universal relation :

.37 1 1
K =(3—]'-5—-———A

T Ay
945 9072A ;A (3:23)
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Denoting! ;

Ha=2 o g io = 752 = fi(K) (3.24)
& 45— s — wnh?
and,
Tobe _ o L 87 1 1
wU "(2+6A)(315 945A 9072A)"f’(m (3.25)

and substituting K, Z, f1(K) and f;{K) from equations (3.20), (3.21), (3.24) and (3.25),
respectively, into the momentum equation (3.19) together with f’-vﬁ = %%Z;, then the

following relation may be obtained :

1,.d2

EUEE + 12+ A(K)K = fr(K) (3.26)
Finally, introducing the additional abbreviation :

F(K) = 2f,()) — 4 — 2K fi(K) (3.27)

or, written out fully,

2 3
——— A 3.2
9(}72“ (3.28)

116 2 1
2 L — —— —
M) 315A +(945 + 120

F(K) = 2o~ a2

— —— A!
315 T eas T 9072 A"+

where the relation between A and K was given in equation (3.23). With all these abbre-
viations and substitutions, the momentum integral equation (3.26) can now be rewritten

in the very condensed form :

K =ZU' (3.29)

3
This is a non-linear differential equation of the fitst order for Z = % as » [unction of

the current length coordinate x.

I'The quantity Hyz = 5 js nlso regarded as a shape hctor ; it is of particular importance for the

turbulent boundary layer. fia value for laminat boundary layers ranges from about 2.3 {0 3.5 ; and from
sbout 1.2 to 2.2 in the case of turbulent boundary layers.
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Table (3.1): Functions for the epproximate calculation of laminar boundary layers.

A K F(KY [ fi(K) = Hyy = 6765 | Ja(K) = 7,6, /00
2~ | 0.0948 | -0.00048 2.250 0.356
11| 0.0941 [-0.00912 2.253 0.355
10 | 0.0919 | -0.00800 2.260 0.351
g | 0.0882 | -0.00608 2.273 0.347
8 | 0.0831 |-0.00335 2.289 0.340
78 | 0.0819 | -0.00271 2.293 0.338
76| 0.0807 |-0.00203 7207 0.337
7.4 | 0.0794 | -0.00132 7.301 0.335
72 | 0.0781 | -0.00051 2.305 0.933
7052 | 0.0770 | 0.0 2.308 0.332
70 | 0.0767 | 0.0021 2.300 0.331
6.8 | 0.0752 | 00102 2.314 0,330
6.6 | 0.0737 | 0.0180 2.318 0.328
6.4 | 0.0721 | 0.0274 2323 0.326
6.2 | 0.0706 | 0.0363 2328 0.324
6.0 | 0.0689 | 0.0450 2.333 0.321
5.0 | 0.0589 | 0.0979 2361 0.310
40 | 0.0497 | 0.1579 2.302 0.207
3.0 | 0.0385 | 0.2255 3427 0283
2.0 | 0.0264 | 0.3004 2.466 0.268
1.0 | 0.0135 | 0.3820 2.508 0.252
00 | 00 | 0.4698 2.554 0.235
1.0 | -0.0140 | 0.5633 2.604 0.217
20 |-0.0284 | 0.6609 2647 0.199
3.0 |-0.0420 | 0.7640 2716 0.179
4.0 |-0.0575 | 0.8698 2779 0,360
50 | -0.012 | 0.9780 2.847 0.140
6.0 |-0.0862 | 10877 7,921 0,120
7.0 |-0.0099 [ 1.1081 2.000 0.100
8.0 |-0.1130 | 1.3080 3.085 0.079
"9.0 |-0.1254 | 1.4167 3.176 0.059
100 | -0.1369 | 1.5229 3.276 0.030
11.0 | -0.1474 | 1.6257 3.383 0.010
12.0 | -0.1567 | 1.7241 3.500 0.0

32
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3.2.1 Solution of the differential equation for momentum thick-
ness

Concerning the solution of equation (3.29) it is possible to make the following remarks:
The calculation should begin at the stagnation point = = 0, where U = 0 and & is finite
and different from zero. From equation (3.29), it is seen that the initial slope of the
integral curve (%) would become infinite at the stagnation point were it not for the
fact that F(K) vanishes there simultaneously . Thus the function F(K') is seen to have
a physically meaningful initial value. The zero value of F(K') occurs for values of A
for which the second bracketed term on the right-hand side of equation (3.28) vanishes.
Thus,

F(K)=0 for K=1K,=0077 ; or for A=A,=7052
Hence A = 7.052 is the value of the first shape factor at the stagnation point, ns already
mentioned.
In this manner the initial slope of the integral curve at the stagnation point is seen to be
of the indefinite form ¢ (singular point of equation (3.29)), but its value can be computed

by using L'Hospital rule, thus:

K, 0077 dz (dF(K)/dK), U

Zo=7r =" (&= Toaru)dK), ur (3.30)

Where the subscript o refers to the stagnation point.

With these initial mlﬁes, equation (3.29) can be graphically integrated. The calculation
begins with the values A, = 7.052 and K, = 0.077 at the leading-edge singnation point,
and becomes completed upon reaching the point of separation where A = —12 and
K = —0.1567 (if transition did not occur). The velocity function U/(x}, logether with

its first derivative 92, is given by the polential-flow solution. The value of %’;’% is only
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required 2t the leading edge for the initial slope of the integral curve.

Computational procedure may be summarized as follows :

1. The potential flow function U(x), together with its derivative 52, are given in terms

of the arc length.

2. Graphical integration of equation (3.29) gives both Z(z) and the second shape factor
K(z) so that the momentum thickness §;(z) can be calculated from equation (3.20),

and the position of the point of separation may be found subsequently.

3. The variation of the first shape factor A(z) is obtained from equation (3.23) and

table (3.1).

4. The displacement thickness §; and the sheating stress at the wall 7, are found from

equations (3.24) and (3.25) , respectively, together with the values in table (3.1).
5. The boundary-layer thickness §(z) is obtained from equation (3.17).
6. Finally, the velocity distribution is found {rom equation (3.10).

Integration of equation (3.29) as indicated above requires the use of both the above
mentioned equations together with table (3.1) to obtain the solution. Thus this procedure
is characterized to be a very tedious and time consuming one. Also, this procedure can not
be employed in a computer progré.m. Instead equation (3.29) can be reduced to a simple
quadrature by the introduction of a further approximation without any appreciable loss
of accuracy.

On the suction surface of most turbine blades, the first ~ 30% of the surface length is

characterized to have a laminar boundary layer with positive values of the shape factor
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K = %% (i.e. accelerating flow) up to the transition point. Furthermore, the pressure

surface of most turbine blades is characterized to have an acceleraling flow (i.e. positive

values of K) from the leading to the trailing edges.

As seen in figure (3.3), for positive values of K, the auxiliary function F(K) can be

approximated quite closely by the straight line.

F(K) = a - bK

with @ = 0.47 and b = 6 (intercept and slope of the line). Thus this approximation is

justified for most turbine blades.
With this approximation equation (3.29) reduces to,

Uiz-=a—bK
dz

Substituting the original values of Z and K in the above equation, then :

d U8 Ul 1dU
&m0

This dillerential equation for Y8 can be integrated explicitly to yield,
B

v

Uéf a £ b=l
_;— - Ub_l /¢=0 U dz

or, using the numerical values of ¢ and b given earlier, then

Us 047 [
222 [0 ptd
v [JE z=0 ®

or,

0470 [
§=—2 [ vds

(3.31)

Thus the solution of equation (3.29} is secn lo reduce to a simple quadrature. The only

input to the program is the variation of the [rec stream velocity U{z). Velocily derivatives
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ﬂ—% and %) are being calculated using Subroutine VLOCT as shown in Appendix C.

With the momentum thickness §; being calculated, the computational procedure is

carried out as follows :

1. The potential flow function U(z) is given in terms of the arc length. Velocity

derivatives (9 and t"'U) are being calculated using Subroutine VLOCT.
2. Boundary layer momentum thickness 6;(z) is calculated using equation (3.31}.
3. The second shape factor K{z) is found from equation (3.20)

4. The boundary layer thickness §(z) is calculated from equation (3.17), that is;

but since at this step the shape factor A is still unknown, it is nccessary to neglect
the terms -9%-5- and E?i compared to the 3% term in the above equation. With this

assumption, the boundary layer thickness is calculated from,

b 3T

§ 315

5. The shape factor A is calculated from equation (3.9), that is,

6. The displacement thickness §, and the shearing stress at the wall 7, are found from

equations {3.17) and (3.18), respectively, that is;

7. Finally, the velocity distribution is found from equation (3.10).
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The pressure gradient in the external flow has 2 great influence on the stability of the

boundary layer, and hence on transition, in the sense that a favourable pressure gradient
stabilizes the flow and an adverse pressure gradient renders it less stable.
It is known from the theory of laminar boundary layers, that generally speaking, the
curvature of the wall has little influence on the development of the boundary layer on &
cylindrical body of arbitrary shape (eg. turbine blade), this is true s long as the radius
of curvature of the wall is much larger than the boundary-layer thickness, which amounts
to saying that the effect of the centrifugal force may be neglected when analyzing the
formation of a boundary layer on such bodies. Ilence, the boundery layer is seen to
develop in the same way as on a flat wall, but under the influence of that pressure
gradient which is determined by the potential flow past the body (i.e. turbine blade).
The same applies to the determination of the limit of stability of the boundary layer with
a pressure gradient different from zero.

The approximate method described earlier is convenient for the calculation of laminar
velocity profiles and it is, therefore, useful to investigate the stability of the associated
velocity profiles.

The shape of the velocity profiles is determined by the dimensionless shape factor :

The family of velocity profiles was shown in figure (3.2).

At the point of minimum pressufe, A =0, and for A > 0 the pressure decreases, while
for A < O the pressure increases. The velocity profiles for A < 0 each posses a point of

inflexion.

Schlichting and Ulrich [24] carried out stability calculations for this family of velocity
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profiles. A family of neutral stability curves defined by the shape factor A and repre-
senting the variation of § with the Reynolds number Y& is shown in figure (3.4). Both
branches of the curves of neutral stability for all velocity profiles with a decreasing pres-
sure (A > 0) tend to zero as Re = %8 — 0.

On the other hand the upper branches of curves corresponding to profiles with adverse
pressure gradient (A < 0) tend to an asymptote which differs from zero, so that even for
Res, — oo there exists a finite region of wavelengths at which disturbances are always
amplified .

The point on these curves (figure (3.4)) at which the Reynolds number Reg, has its small-
est value is defined ea the limit of stability for the laminar flow of intercst. This Reg, is
called the critical Reynolds number Heg, ..

It follows that Reg,, can be plotied as a function of A (figure (3.5)), and hence, of the
surface distance z. The intercept of this curve with that representing the variation of the
local Reynolds number y;‘il with z will yield the point of instability.

Thus the determination of the position of the point of transition for prescribed blade
shapes becomes very easy if use is made of the results contained in figures (3.4-3.5).

As stated earlier, the calculations starts with the evaluation of the laminar boundary
layer from the potential velocity distribution U(z), which is regarded as known, by the
use of the approximate method outlined previously. Such a calculation furnishes values
of the shape factor A and the displacement thickness & in terms of the length of arc =,
measured from the stagnation point.

On proceeding along the laminar boundary layer from the stagnation point in a down-

stream direction at an assumed constant body Reynolds number Qf‘j—' ( I: Dlade chord ),
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-it is noticed that, at the beginning, the limit of stability (%4 )erse is very high owing to
the sharp pressure decrease (i.e. near stagnation point).

On the other hand the boundary layer is thin and consequently the local Reynolds num-
ber Y& js certein to be smaller than the critical value (Z)rit and the boundary layer
is stable. Further downstream the rate of pressure decrease becomes smaller and is fol-
lowed by a pressure increase beyond the point of minimum pressure so that the local Imit
of stability (ka).,,u decreases in the downstream direction, whereas the boundary-layer
thickness and, with it, the local Reynolds number (22} increases.

As stated previously, at a certain point the two become equal :

—(-];61— = % erit (Point of instability)

and from this point onwards the boundary layer is unstable.

The location of this point, evidently, depends on the blade chord Reynolds number (g_:,_l)
because the local boundary-layer thickness is influenced by it.

As a rough guide in approximate calculations it is possible to deduce the mle that the
point of transition elmost coincides with the point of minimum pressure of the potential
flow in the range of Reynolds numbers from 10° to 107 [24]. At very large Reynolds num-
bers the point of transition may lie & very short distance in front of that position (i.e.
minimum pressure point) and it may move a small distance behind it at small Reynolds
numbers, particularly when the pressure gradient, wlletherl positive or negative, is small.
On the other hand, it should be noted that the point of transition slways lies in front of
the point of laminar separation [24] irrespective of the value of the Reynolds number.
Furthermore, since the point of minimum pressure almost coincides with the point of

instability [24], then, for typical gas turbine applications, it can be assumed, that the
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point of instability coincides with the point of minimum pressure and that the point of
transition follows shortly afterwards. The precise distance between the point of tran-
sition and the point of instability depends on the rate of amplification of the unstable
disturbances and on the intensity of turbulence in the free stream. In turn, the rate of
amplification is strongly influenced by the pressure gradient.

Further discussion on transition region models (i.g. transition start, length, and path) is

presented in the next chapter.
3.3 The laminar region of the boundary layer (Ther-
mal boundary Layer)

3.3.1 Stagnation point heat transfer

Starting with the class of velocity boundary layers on wedges and assuming that
the external flow is of the form U(z) = u,z™, where v, is a constant , and the wall-

temperature distribution also satisfies & power law, say one of the form,
To(z) — T = 12"
where T} is a constant and walls of constant temperature are included as the cnse n =0

It is shown in [24], that 2-D wedge flows are described by the following momentum and

energy equations.

m+1

fm + __2_ffn + m(l _ fﬂ) =0 (332)
and ;
8" + %1— Prfg' —nPrf'd= —PrEL?™ " (3.33)

where : (') denotes the derivative wilh respect Lo &, and ;

w L U(x)
—_— = = — = 1 — 9 —_— —
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and the solution must satisly the boundary conditions :

{=0, f=f=0,0=1

§=o00, ff=1,68=0

Here E = EE% represents the Eckert number.
When the effect of dissipative heat is neglected in equetion (3.33), the following simpler
energy equation is obtained :

6" + T—%’-lpr f6' —nPrf8=0 (3.34)

whose solutions for different values of the parameters m,n, Pr have been published by =
number of authors [42,43].

Eckert [42] solved equation (3.34) and demonstrated that for n = 0, the local Nusselt

number is given by :

\I/V% = F(m, Pr) = { ]o ” exp [—Pr,/"‘; 1 /D ‘ f(g)dg] dg} ) (3.35)

Where Nu, = —+/Fe 8'(0).

In the neighbourhood of the stagnation point, where the velocity distribution is rep-
resented by U(z) = w2 with m = 1, the Nusselt number defined in equation (3.35) can
be represented by the following equation :

Nu,
Vv e,

on condition that energy dissipation is neglected .

= F(Pr,1) = A(Pr) (3.36)

The constant A as function of Pr has been tabulated by Squire [25], as shown in table

(3.2).
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Table (3.2): The constant A in the equation for the calculation of the coeflicient of heat

transfer in the neighbourhood of stagnation point, after Squire {25].

Pr| 06 0.7 0.8 0.9 1.0 1.1 | 7.0 [ 10.0 ] 15.0
A |0.466 [ 0.495 | 0.521 | 0.546 | 0.570 [ 0.592 | 1.18 | 1.34 | 1.54

The above table is entered as subroutine PRAN in the Integral method Fortran program.
For the leading edge of the blade, putting U(z) = U, sin(%) so that u; = e, where D

is the diameter of the blade leading edge, then equation (3.36) becomes :

Nu, ha Dv lhD 1 NuD
T = T\ Wos =5 kD~ avies - AP (3-37)

Thus,
Nup = 2A(Pr)y/ Rep

From the above equation, the heat transfer coeflicient at the stagnation point is :

2Av/ Hepk 24y RepC,p

h= =
D DPr

3.3.2 The laminar thermal boundary layer in front of the stag-
nation point

For steady, two-dimensional boundary-layer compressible flow of & perfect gas, the

energy equation is given by:

oT  orT T ou\®> dpP
oCp (na— + va—y-) = ké? + 1t (5;) + v (3.38)

For the following approximate integral method of solulion il is necessary to neglect the

effects of compressibility and frictional heat in the above energy equation.
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In doing this, it is possible to integrate the energy equation from y = 0 to y = oo, and

so to obtain the heat-flux equation :

Ei-fn‘” [u(T - T.)] dy = —a (%g)m (3-39)

where a = Fc,i; is the thermal diffusivity of the fluid.
The above equation is sometimes called the energy-integral equation which is quite anal-
ogous to the momentum-integral equation (3.5) for the velocity boundary layer.

From among the. numerous procedures used for the solution of the heat flux equation
(3.39), the metl\lod of Squire [25].i5 used in this study.
In order to evaluate the integral on the left-hand side of equation (3.39) , the variables
7 = ¥ for the velocity boundary layer end nr = & for the thermal boundary layer arte
introduced, where 67 is the thermal boundary-layer thickness. Furthcrmore, their ratio
is denoted by A = éf.

Squire [25) assumed that the velocity and temperature distributions have the following

forms :
v_ _ o3 A _F A
(o) 27 — 20° + 7*] = F(n) (3.10)
T-T,
ﬁ—-_:[;: = [1 - 21]1' + 27];- - 1];-] = L(?]T) (3.41)

The velocity distribution used here corresponds to equation (3.11) used before, and the

form of the temperature distribution function was so selected by Squite in order to ensure
identical velocity and temperature distributions for §r = §, as required by the Reynolds

analogy.

On substituting equations (3.40) and (3.41) into equation (3.39), the following equation
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is obtained :

;; {6rUH(D)} = %g- (3.42)

Where H(A) is a universal function of & = % which turns out o be given by :
H= f ” F(8)L(67)dsr (3.43)
0

Performing the indicated integrations, in the above equation, then :

H(A) = ia——"’—mu -

4
02 F il for B <1

3 31 21 31 11
H _— e Ly A1 3.44
(A) =G watTsa o Tma I > (3.44)

The last equation for H(A) (i.e. equation (3.44) with A > 1) is to be used in the present
calculations, since it is known that air (or more precisely, combustion gases) has Pr value
around 0.7, thus ér > §and A > 1.

The integration of equation (3.42) yields :
(6:UH)? = 4o f "UHdz (3.45)
0

The velocity boundary-layer thickness § can be evaluated with the aid of equation (3.31)

and equation (3.17), thus :

= 34-- [ Utdz (3.46)

Upon dividing equation (3.45) by equation (3.46), the following equation is obtained :

4 1 U [fUHde

—_— 47
34 Pr HJFUtde (347)

ATH(D) =

Since H(A) is & known function of A, and the velocily distribution U{z) outside the
boundary leyer is known, the preceding equation can be used to determine A(z) and

hence 6r(z). The calculation is best performed by successive approximations, starting
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with the initial assumption that A = constant (i.e. omitting H from the right-hand side

of equation (3.47)), so that ;

41 U*[fUde

2 T — r—
BH(B) = 5 5 T U ds

(3.48)

The obtained values of H and A from equation (3.48) and equation (3.44) are substituted
back into the right-hand side of equation (3.47) which together with equation (3.44)
yield an improved value of A. In general, two steps in the iteration arc found to be
sufficient. In this successive approximations solution scheme, Subroutine DTTRMX is
used to iteratively solve for the unknown A.

Using equation (3.41), the local rate of heat transfer flux becomes :

{'(z) = -k (%) = AT, — Tm)g (3.49)

and hence the local Nusselt number referred to a characteristic length 1is :
7]
M, =2 Lot (3.50)

and the heat transfer coeflicient is:

_ 4= L kL b
h(z) = T T, - 261-(:3) = 2Pr6r(m) (3.51)

The steps taken to evaluate the thermal boundary layer, and in particular, to determine
the variation of the heat transfer coefficient along the laminar part of the boundary layer
found over the blade surfaces of prescribed shape (i.e. U(x) distribution is known) are

thus as follows :
1. Evaluate A(z) from equations (3.47) and (3.48).

2. Evaluate §(z) from equation {3.46}.
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3. Steps [1] end [2] give &r(z), since 6r(z) = A(z).8(z).

4. Finally, the heat transfer coefficient A(z) follows from equation (3.51).

3.4 The turbulent region of the boundary layer

3.4.1 Introduction

In the present section discussion will be given to the behaviour of a turbulent bound-
ary layer in the presence of a positive or negative pressure gradient along the wall. The
existence of a negative and, in particular, of & positive pressure gradient exerts a strong
influence on the formation of the boundary layer just as was the case with the laminar
part of the boundary layer.

At the present time this very complicated phenomena is far from being understood
completely but there are in existence several semi- empirical methods of calculation which
lead to comparatively satisfactory results.

All epproximate (Integral) methods for the calculation of turbulent boundary lay-
ers are based on the integral forms of the momentum and/or energy equations. Since,
however, no general expressions for the shear and dissipation in turbulent flow can be
deduced by purely theoretical considerations, it is necessary to make additional suitable
assumptions, these can only be obtained from the results of systematic meastrements
and, consequenily, the calculation of turbulent boundary layers by approximate methods

is semi-empirical.
3.4.2 Calculation of the momentum thickness §;(z)

In calculating the momentum thickness &, Truckenhrodt {26] followed a somewhat

different path in that he made use of the encrgy-integral equation and not the momentum-
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integral equation.

As seen from equation {A.12), the energy-integral equation may be written as :

1 d, 4 d+t
—_— - . 2
e d.’z(U 83) 2pU3 (3.52)
where: :-—,*j} = fo w’—;%(ﬁ)dy (shear-stress work)
and §3 denotes the en.crgy thickness es defined in equation (A.10).
The quantity : '
d+t 5 r 9 ,u
=, sy (3.53)

represents the dimensionless friction work performed in the boundary layer by the shear-
ing stresses 7. The quantity d is the portion of this friction work which is transformed
in to heat (dissipation) and ¢ is the energy of the turbulent motion.

For calculation of the turbulence energy ¢, Rotta [28) indicates an approximation formula.
With the aid of this formula, Truckenbrodt [26] showed that the turbulence energy ¢ is
negligibly emall compared to the dissipation, this fact has already been pointed out by
Rotta [28]. Therefore, for further calculations the following is assumed :

t
— =0. 3.54
7 =00 (0.54)
Ludwieg and Tillmann [27], as well as Rotta {28], dealt in detail with the determination of
the wall-shear stress in case of turbulent boundary layers with pressure gradient, Ludwieg

and Tillmann indicated that for the range of the momentum thickness Reynolds numbers

1x10® < yf“ < 4 x 10, wall shear stress is given by the following empirical formula :

pU? o 8 % v )

where Hy3 = 6, /82

Rotta [28] proposed for the wall-shear stress the following experimentally deduced relation

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



48

v.ly, (Hu—v—) +B (3.56)

where :u* = \/1'—:- signifies the shear velocity.

Thus :

pgz - (Ei)2 (3.57)

is valid. In equation (3.56), X = 2.5 and B = B(ly) is a function of the quaniity

m
L = E}l’.-‘l-;—!-% The function B was evalualed and graphically represented by Rotta.
Rotta calculated the wall shear-stress values for various valies of H); and plotted them
egainst the Reynolds number Y2 in figure (3.6). The agreement between the data
of Ludwieg-Tillmann and Rotta is quite satisfactory. This implies that the Ludwieg-
Tillmann empirical formula for the wall shear stress coﬁld be used in the turbulent part
of the boundary layer.

Rotta [28] also dealt with the calculation of the shear-stress work (i.e. dissipation and

turbulence energy). He found out that the dissipation term may be given by :

d u* 3 1 Ué:

The function appearing here, G = G(I;), has been evaluated by Rotia.

Using equation (3.56), one may write equation (3.58) s :

o= () o) o

since % =f (-U—:‘-,Hu) ,G=G(I,), B=B(I,))and I, = E;hi—:l%, the dissipation term
may also be represented ns a function of the Reynolds number yl—fl and of the shape factor

Hiz, this is shown in figure (3.7). 1t is found that the differences in the dissipation values

for different values of Hj; are only slight.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



49

From figure (3.7), it turns out that the dissipation curves are elmost independent of Hy,

and it may be assumed that the dissipation term may be approximated by :

d _ B(Hn)
ik (%)i (3.60)

Rotta indicated that the dependence of the value of 8, on Hj; is only slight, so that it

may be assumed that §; has the constant value of 0.56 X 102 recommended by Rotta.

Thus, the dissipation in the turbulent boundary layer becomes :
d _ 0.56 x 1072

()

v

(3.61)

combining the above dissipation equation with equation (3.54) for the turbulent energy

(i.e. E'ﬁ = 0.0), then the shear-stress work (i.e. friction work petformed in the houndary

layer by the shearing stresses 7 ) becomes :

d+t _ Bi(H;,) 056 x 1072
)t ()

v v

(3.62)

As mentioned earlier, the momentum thickness shall be determined from the energy-
integral equation (3.52). Substituting the expression for frictional work from equation

(3.62) into the energy- integral equation (3.52), then,

-2
7! 363)=2‘Z‘(”3’3 = “(2 X)m (3.63)
Ui\ » Uz y»
or using the definition of Hy, = %},
1 d, , 1.12 % 102
1 d ag oy 112% 1077 3.64
Ua dw(U ZI 32) (g_&_,_)ﬁ ( )

Truckenbrodt [26] assumed a mean value of the shape factor H3, and integrated equation

(3.64) to yield ;

(3.65)

. (Vs TG+ AL, UM ide
\ v h U+

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



50

where the constant Cy accounts for the laminar part of the boundary layer that precedes
the turbulent boundary layer. Detailed derivation of equation (3.65) is given in Trucken-
brodt paper [26].

The constant A in equation (3.65) can be expressed with the sid of the total coefficient
of turbulent skin friction, Cy, for a flat plate at zero incidence which is known to depend
on the Reynolds number Y=! (where is the characteristic length and Uy is the upstream
inlet velocity).

The skin-friction drag D(z) of a flat plate of length # and width b on one side satisfies

the following relation :

D(z) = b/: 1o(z')dz’ = bp :(z) WU — u)dy (3.66)

=0
Introducing the momentum thickness 8, for a flat plate defined by &, U2, = f[f (U —1)dy,
into equation (3.66), then,

D(z) = bpUZ 6:(z) (3.67)

From equations (3.66) and (3.67) , the local shear stress can be written as :

1dD » 453
i = ole) =eUl— (3.68)

Introducing the well known dimensionless coeflicients for the local and total skin friction

' To D
Cy T,z an Cy LU (3.69)
Substituting equations (3.68) and (3.67) into equation {3.69), then
, 08 855(0)
C_f = 25 ﬂ.ﬂ.d Cf =2 { (370)

where (') denotes the local value,

Returning back to the determination of the constant A in equation (3.65), and assuming
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for a while, that the turbulent boundary layer start from the leading edge, then according
to equation (3.70), the total skin [riction over the enlire characteristic length is Cy =

254‘(9, with C; =0, 2, =0, z = l and U = U, thus equation {3.65) yields :

ONE

Using equation (3.71) the momentum thickness from equation (3.65) becomes :

L
= A (3.71)

atl =f1

-3 L s+l o =
() @ LE ) e

A very good velue of the local coefficient of skin friction could have been obtained from

the Ludwieg-Tillmann empirical formula (i.. equation (3.55)) but unfortunately Truck-

enbrodt’s method does not solve for the variation of the shape factor Hy, along the blade

profile. Instead, :C; was obtained from,

1., T Q
ch =7 = (M)* (3.73)

v

The resistance equation (3.73) has been derived by Prandil [26], for the velocity distri-
bution in the turbulent boundary layer on a flat plate given by j; = (g) g.
The shear stress at the blade wall is assumed to be of the same form as that for the flat
plate at zero incidence, i.e. equation (3.73), except that instead of the constant external
velocity Uy, the variable velocity U(z) is substituted.

The quantities © and n still depend to a cerlain extent on the Reynolds number. For

typical turbulent flows encountered on turbine blades, Truckenbrodt [26] gives the values

: 2 = 0.0128, and n = 4, thus equation (3.73) becomes :

1, 7, 00128
EC! pU? - (UJ )i
Uéy

v

(3.74)
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Also, in accordance with the Appendix of [26], Truckenbrodt gives the following formula

for the calculation of the constant A in equation (3.71) :

A:["“]n
T

inserting the numerical values of 2 and n, then

A= [4 : 1] x 0.0128 = 0.016
thus equation (3.71) becomes :
Cr\* 0016
(@ - o

(%)
The value of (E’f-)&y obtained from equation (3.75), is now substituted into equation
(3.72).

Thus the momentum thickness &{z), can be found from equation (3.72) by simple
quadrature process.
The constant Cj in equation (3.72) takes into account the laminar portion of the boundary
layer, and =z, denotes the position of the point of transition.

C; value is found to be:
=)

19(%
. 1 e/l ¢ U\ r2V)?
oo (1 (')
Where Cy, denotes the laminar total coefficient of skin friction for a flat plaie at zero
1328

incidence at a Reynolds number Re,_; = yf-' (ie. Cp = g laminar exact Dlasius

golution ) and n = 4.

3.4.3 Calculation of the heat transfer coeflicient

The occurrence of a fluctuating motion in a turbulent flow causes momentum to be

exchanged vigorously between the layers of dillerent velocities. It also canses nn increase
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in the transfer of heat when temperature gradients are present. For this reason, there
exists an intimate connexion between heat and momentum transfer in general. In pat-
ticular, we must expect the existence of a relation between the heat flux and the shear
stress at the wall itself.

The existence of such an analogy between heat and momentum transfer was first discov-
ered by Reynolds (i.e. Reynolds analogy). This analogy enables us to make statements
concerning the transfer of heat from the known laws of drag in turbulent boundary layer.
The exchange coeflicients for momentum and heat (EM and eg) both have the dimen-
sion of viscosity, so that in addition of the molecular Prandtl number Pr = ‘i%, it is

convenient to introduce 2 corresponding, dimensionless, turbulent Prandtl number :

Pre= M (3.77)
34

As it is known elready, the velocity and temperature profiles are identical in the cnse
of laminar flow past a flat plate at zero incidence on condition that frictional heat is
neglected and that the Prandtl number is equal to unity. The same can be asserted in
relation to turbulent flow, on cond_ition that Pr, = 1 as well as Pr = 1. This implies
physically that it is assumed that the same mechanism causes the exchange of momentum
and heat. Reynolds assumed that the velocity and temperature profiles arc identical and

therelore the following equation is valid :
q(z) = -j--—:-——r,(z) (3.78)

Furthermore, Reynolds rearranged the preceding equation to the following form :

Nu, = %RexC} (Reynolds, Pry = Pr = 1) (3.79)
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The principal difficulty in studying turbulent boundary layers and turbulent heat transfer
problems etems from the fact that the eddy or exchange coeflicients eas nand ex are not
properties of the fluid, unlike the viscosity g or the thermel conductivity k, but that they
depend on the distance from the wall inside the boundary layer. At a sufficiently large
distance from the wall they assume values which are many times greater than the molec-
ular coeflicients i and k, so m}:ch g0, in fact, that in most cases the later can be neglected
with respect to the former. By contrast, in the immediate neighbourhood of the wall, i.e.
in the laminar sub-layer, the eddy coefficients vanish, because in this sub-layer turbulent
fluctuations and hence turbulent mixing are no longer possible. Nevertheless, the rate of
heat transfer between the stream and the wall depends precisely on the phenomena. in
the laminar sub-layer and so on the molecular coefficients p and k.
1t is fortunate that equation (3.79) remains valid throughout, regardless of the exisience
of a laminar sub-layer, because when Pr = 1, the velocity and temperature distribution
in the laminar sub-layer remain identical. By contrast, the Prandt]l number in the lam-
inar sub-layer can differ appreciably from unity, as in the present casc {i.e. flow of nir
over turbine blades), when this is the case, equation (3.79) loses its validity.

Extensions of the Reynolds analogy to cases when Pr # 1 have been formulated by
many suthors, among them L.Prandtl [24] and Th. Von Karman [44].
Prandtl assumed that Pr, = 1 and divided the boundary layer into two zones : the lami-
nar sub-layer in which the eddy coefficients vanish, and the turbulent external boundary
layer, in which the molecular coefficients g and k can be neglected. Under these assump-

tions he derived the following extension of the Reynolds analogy :

%C} e, Pr

Ne = T a0) (Pr = 1)

(Prandtl, Pr, = 1) (3.80)
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where 3} is the ratio of the mean velocity at the outer edge of the laminar sub-layer to
that in the Iree stream.

Prandt] used for this ratio the following formula:

NG 5\/%0; (3.81)

Thus equation (3.80) becomes:

Nu, = 3C} Re Pr
1+5/3;C; (Pr—1)

In deriving the Prandtl equation (3.82), it was supposed that the boundary layer could be

(Prandtl, Pry = 1) (3.82)

sharply divided into a turbulent layer and a laminar sub-layer. In actual fact onc region
merges into the other in a continuous way and it is possible to notice the existence of
en intermediate, or buffer layer in which the magnitudes of the molecular and turbulent
exchange are comparable.

Von Karman [44] subdivided the boundery layer into three zones and derived a similar
formula for the relation between the coefficient of heat transfer and skin friction. This
relation is given by:

_ %C}Re,Pr
T 1+5/ic {(Pr—-1) 4+ [1+3(Pr-1)}

Where 1C; is obtained from equation (3.74).

(VonKarman, 'r, =1) (3.83)

Nu,

The extended analogy relation (i.e. equation (3.83)) belween the rate of heat transfer
1 in turbulent flow is of great practical importance becansc its application
to flows past flat plates. It can be used for athitrary turbulent flows
te gradients) and thus enjoy much more general applicability.  The

been confirmed by numerous measurements [24].
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Thus, equation (3.83) shall be used to determine the heat transfer coeflicient distribution

over the turbulent part of the boundary layer found on the blade surfaces. -
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Chapter 4

DEVELOPMENT OF A SPECIFIC
METHOD FOR GAS TURBINE
APPLICATIONS ( TRANSITION
REGION MODELING AND
TURBULENCE INTENSITY
EFFECTS)

4.1 Introduction

The overall objective of the present study has been to define and/or develop a suit-
sble analytical technique for predicting local gas-to-blade heat transfer coeflicients for
nonfilm-cooled airfoils operating in a gas turbine environment.

Although any computational method which does not solve the full Navier-Stokes and
energy equations cannot be expected to be universally valid over the entire range of dr-
cumstances governed by these equations, there are solutions from reduced sets of these

equations that ere valid for a subset of problems. In particular the boundary layer equa-
tions physically satisfy most of the theorctical assumptions used to formulate the reduced
set of equations. It is implied in this work that the flow ficld immediately adjacent to the

solid surface of an airfoil at typical gas turbine geometry conditions can be analytically
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modeled using the boundary layer equations.

In the previous chapter, an integral boundary layer method was defined and laid out
in detail. This method is capable to solve the laminar and turbulent regions of the bound-
ary layer present over the blade profile. What is lacking in the above method are ways
to incorporate the effects of transition start, path, and length and turbulence intensity
on the prediction of the heat transfer coefficient.

The previously defined integral method predicts the start of transition near the minimum

). This

ot

pressure point (i.e. where the point of instability is defined by %’l = {U—jl}
transition start model although contains the effect of pressure gradient, it lacks the ef-
fects of turbulence intensity on the start of transition. Furthermore, nothing uptell now
is mentioned about how to model the transition path and length, and how to predict the
boundary layer parameters including the heat transfer coeflicient in the transition region.

In a latter section of this chapter, several transition region models (start, path and
length models) extracted from the Literature are introduced which are used in an evalu-
ation task against available airfoil heat transler experimental data in order to test their
capability to model the transition region found over the suction surface of modern gas
turbine blades.

The turbulence intensity level has an effect on the transition region start, path, and
length as it will be seen latter in this chapter. Other than this eflect, the turbulence
intensity has a very important effect on the heat transfer level in the lnminar region of
the boundary layer.

In a general laminar boundary layer analysis (such as the integral method previously

defined), it is generally assumed that the external stream {potential flow region) is also
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laminar, However, in a typical ges turbine environment, the external stream carries with
it & certain degree of turbulence which means that at every point in the stream the ve-
locity fluctuates, changing its mégnitude and direction.

Several studies found in the literature [19,20,21] concluded that an increase in the
intensity of turbulence of the free-stream must produce two essentially important and
different effects. First, an increase in turbulence intensity causes earlier transition region
start and hence an increase in the rate of heat transfer which is a characteristic of a
turbulent flow as compared with a laminar flow. Secondly, in the presence of a laminar
boundaty layer, increasing the turbulence intensity in the free-stream has the effect of
increasing the heat transfer level.

As seen from Turner’s experimental results [19] shown in figure (4.1), the pressure
surface, which has a favourable pressure gradient from the leading to the trailing edge
(see figure (4.2)) has no observed sudden transition from a purely laminar to a purely tur-
bulent flow, but a systematic increase in pressure surface heat transfer levels is observed
as turbu:lcnce intensity was incressed. Figure (4.1) also shows that the laminar flat plate
prediction agrees well with the 0.45% turbulence intensity heat transfer experimental
curve. On the other hand, higher turbulence intensity heat transfer experimental curves
(i.e. 2.2% and 5.9%) lies between the laminar and fully turbulent flat plate prediction
curves. These observations show the necessity to include the effect of turbulence intensity
on laminar heat transfer prediction by the previously laid out integral method.

Latter in this chapter the effect of turbulence intensity will be included by medifying
the laminar (dynamic) viscosity st to include a turbulence viscosity pru term which will

account for the effect of turbulence intensity on the boundary layer prediction over the
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pressure surface.
Turner’s suction surface experimental results shown in figure (4.1) indicates that in-
creasing the inlet turbulence intensity from 0.45% to 2.2% produced little or no eflect
| in the local heat transfer level over the first 70% of the surface (i.e. where laminar flow
exist), but & further increase in turbulence to 5.9% produced a significant increase in
the local heat transfer most probably due to the movement of the point of transition
upstream foward the leading edge.
The above observations indicate the need for two different approaches for modeling
the suction and pressure surfaces of the blade. Before introducing these two difterent
approaches, a word about the boundary conditions needed to drive the integral method

program should be given. This is done in the following section.

4.2 Boundary conditions

Any given boundary layer code is only as good as the experiment or the inviscid

blade-to-blade code which are used to predict the boundary layer edge velocity condi-
tions. Therefore, any discussion of the development of a suitable airfoil heat transfer
prediction scheme should begin with a discussion of the manner in which boundary con-
ditions are specified.
In genera!, boundary conditions become very important when strong nonequilibrium
streamwise pressure gradients are present. This is because streamwise pressure gradient
terms appear explicitly in the boundary layer equations and become dominant terms
when the flow is strongly accelerited or decelerated.

The specified boundary conditions near the leading edge are usually considered par-
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ticularly important espects of the boundary layer problem because the boundary layer
equations themselves have rather strong "upstream memory” properties {boundary layer
equations are parabolic in nature, thus upstream boundary conditions inaccuracy sffects
downstream predictions). Therefore the boundary layer solutions can be made less sen-
sitive to near stagnation point boundary condition errors by starting the boundary layer
solutions far enough downstream of the blade leading edge where it is difficult to accu-
rately specify the boundary conditions because of the complex flow that exist there and
the small thickness of the boundary layer.

This, of course, cannot be done for airfoil boundary layer computations because the entire
airfoil surface makes up the computational domain and, therefore, is of interest. Thus,
near stagnation point boundary conditions ere critical to airfoil heat transfer problems,
because computations are usually started near the leading edge stagnation point, which
is of critical importance to the designer.

For the airfoil boundaty layer computations performed within this study, boundary con-
ditions were obtained from literature, in which they were generated by both experiment
and the two-dimensional inviscid blade-to-blade solutions (potential flow solution} com-
puted using the time dependent Euler equation solver of Delaney {45]. The Delaney
method uses a body-centered ooo&dina.te system , which allows detailed resolution of the
leading edge and/or stagnation region. Accurate resolution of the stagnation region flow

field is essential to establish accurate boundary conditions in the leading edge region.
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4.3 Modeling the boundary layer over the suction
and pressure surfaces

Since the suction and pressure surfaces of modern gas turbine blades have fundamental
differences in the character of the boundary layer developing on them due to different
boundary layer edge velocity distributions, the author of this study has modeled the

boundary layer found on these two surfaces by two different approaches, as follows:

Suction surface

On this surface of the blade, laminar, transitional, and turbulent flow regions do exist.
The ls.mina.r- and fully turbulent regions are computed as explained in Chapter 3, while
the transition region is modeled using the transition start, length, and path models.
Through the transition region, the boundary layer parameters {heat transfer coeflicient
h, momentum thickness 6;, momentum thickness Reynolds number Reg,, and boundary

layer thickness §) are calculated using the following equations :

h = (1 — % )uaminar + Yehturbutent - (4.1)

82 = (1 ~ ¥e)b2 taminer + Y02 2urbutent (4.2)
Res, = (1 — 1) Reg, Jaminar + Y185, purbutent (4.3)
§ = (1 — 1)dtominar + ’Ytécuraute;: (4.4)

where Rigminar » 82 faminar s 11663 Jaminar 8N Staminar are computed based on laminar flow as-
sumption from the blade leading edge to the trailing edge. Likewise huurbutent, 82 turbutent,
Res, turbutent A0 Surtutent values are computed based on turbulent flow assumption from

the Llade leading edge to the trailing edge.
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The term <, appearing in equations (4.1-4.4) is commonly referred to as intermittency
function. Its purpose is to "turn-on” or "turn-off” the terms it mulliply in a specified
manner. Thus, as it is seen the transition process from laminar to turbulent flow is mod-
eled through ~;.

The physical meaning of +, is that fraction of time a local fluid spot spends in turbulent
mode of motion. According to Emmons [46), turbulent spots originate randomly over a
restricted area at some location downstream of the instability point, then grow indepen-
dently as they move downstream, progressively overlapping and eventually covering the
whole blade surface. By definition, the transition zone extends from the origin of the
turbulent spots to where the blade is fully covered with turbulent flow. It follows that
over the transition zone the flow is alternately laminar and turbulent. This alternance

behavior is expressed using <., that is :

0 laminas-zone
7 =¢ 0<7q <1 transition-zone (4.5)
1 turbulent-zone

specification of the actuel functional form of the intermittency function, v, is the result
of transition origin, path, and length modeling . These models will be given laticr in this

chapter.

Pressure surface

On this surface of the blade, the flow is characterized to be in transitional state from the
leading to the trailing edge. Ilowever, modeling this transitional behaviour is diflerent
from modeling the transition region on the suction surface. To model this transitional be-

haviour, the following eflective viscosily formulation is included to accommodate explicit
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modeling of free-stream turbulence effects which cause this transitional behaviour.

Pefs = B+ pTU _ (4.6)

Thus, the pressure surface transitional behaviour due to free-stream turbulence effects is
accounted for by introducing an additiona! term, pry, referred to here as the "turbulence
viscosity”. With this formulation the boundary layer on the pressure surface is treated to
~ be & laminar one but with the calculations being based on an effective viscosity formed
by combining the dynamic (laminar) viscosity to the turbulence viscosity as given in
equation (4.6).

In closing this section, it should be stated that the eflective viscosity equation (4.6)
together with equations (4.1-4.4) contains new terms (¥, and pry) which are not mod-
eled previously in the integral method program, implying that no attempt was made to
‘explicitly represent end model the transition region and free-stream turbulence phenom-
ena. These points are not made to disparage the original program but rather to support
statements that extensions to the general integral method are necessary for developing a
suitable airfoil heat transfer prediction scheme.

In the next sections several of the various models suggested for defining the terms (v, and
pru) are discussed together with their potential for implementation into a gas turbine
nirfoil heat transfer prediction method.

The types of models extracted from the literature fall within one of the following four

categories :
e Transition origin models.

¢ Transition length models.
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e Transition path models (intermittency).

¢ "Turbulence” viscosity (ury) models.

Taken together, models in the first three categories give a complete definition of the tran-
sition process on the suclion surface and mathematically define the intermittency term,
7:. Models in the fourth category define the turbulence viscosity term pry. Before
listing the models tested, it is useful to first define some of the nomenclature used in
the analytical definitions given for these models. A number of the models are functions
of free-stream turbulence. A distinction is made between upstream level of free-stream
tutbulence intensity, TU,, local boundary layer outer edge level, TU,, and average level,
TU. The definitions of these three types of turbulence intensity level follows Dunham
[47], who developed & transition origin model using TU .

TU, is defined s the assumed isotropic free-stream turbulence intensity that would cor-
respond to the uniform flow field approaching a cascade of sirfoils. This would represent,
for example, an experimentally reported upstream value. TU, is the local boundary layer

!

edge value and it is defined here ( as suggested by Dunham, [47] ) using the following

equation :

TU . for a; > 1

0= { 01[TUs) for 0<a; <1 (4.7)

where:

when a3 <1

o’ -1

G2 = In [n;-" (1+ \/1-—%3)]

when a3 > 1

V-0
(pe),  pU
(PU)oo  Pooloo

az
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In computations, TU,, is constrained, as implied by equation (4.7), to be less than or
equal to TUy. Also, Dunham {47] originally defined a3 = 3= = =y ( velocity ratio) but
in this study the density-velocity ratio is used (to include the effect of compressibility).

The average TU is defined as follows :

77 = LV +T0) ; T0.) (4.8)

Models written as functions of either of the three types of turbulence intensities defined
above assume that actual values are given in decimal equivalent (i.e. 10%7TU is 0.10, not
10.0).

The various Reynolds number definitions given in what follows are all based on the use
of local boundary layer edge velocity with the first subscript indicating length scale basis
and the second identifying how the Reynolds number is used :

Res, tran momentum thickness Reynolds number where transition
begins (transition origin criterion).

Reg, end momentum thickness Reynolds number where transition
ends (transition length criterion).

Ree tran surface distance Reynolds number where transition be-
gins (transition origin criterion).

Reg end surface distance Reynolds number where transition ends
(trensition length criterion).

Rey, transition zone length Reynolds number.

For zero-pressure gradient flows, the last three definilions are related by the following

equation,

Rez,end = Rcz,tran + ReL (49)

For the airfoil problem, the above equation is approximately valid. Also, L, as used here,

corresponds to the physical length of the trausition zone defined as follows :

L= (”’|T¢="-99 - ml‘n:U.D) (4'10)
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Or, alternately, L, is the distance from the transition origin lo where transition is 99%
complete. The definition of 4; used in equation (?l.IU) is represented by equation (4.5).
Some of the transition length and path (Intermittency) models found in the literature are
based on other definitions of transition zone length. For instance, Dhawan and Narasimha

[48] define the transition zone length, d, as :
d= (3'1.=0.75 - ml'{t:ﬂ.!ﬁ) (411)

which defines the physical transition zone length as the distance between the points where
transition is 25% and 75% complete.

Dunham [47] related L given by lequation (4.10) to d given by equation (4.11) using the
following relation,

L =3.36d (4.12)

The procedure used in this work was to convert all transition zone length definitions to

the equivalent of equation (4.10).
4.4 Suction surface transition region modeling

An important characteristic of 8 laminar boundary layer, is that under certain con-
ditions the flow is unstable in the presence of small disturbances, end a transition to a
fundamentally different kind of flow, a turbulent flow, can occur. The viscous forces,
largely responsible for the characteristics of a Jaminar flow, have the effect of restoring
a laminar flow to its previous state when it is subjected to an external disturhance. On
the other hand, inertia forces associated with local transient velocity changes have quite
the opposite effect. Inertia forces tend to be destabilizing and thus amplily local distur-

bances. The Reynolds number is = ratio of inertia to viscous forces, and thus one might
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well expect that the stability of a laminar flow is in considerable part associated with the
value of the Reynolds number, stable laminar flows being associated with low values of
the Reynolds number.

In laminar boundary layer, disturbances to the flow will either decay or grow, if the
disturbances continue to grow, tilerc will be a region down-stream where transition oc-
| curs, beyond which fully turbulent flow will eventually be established. The onset of
transition depends to a large extent upon whether the prevailing boundary conditions
have a stabilizing or e destabilizing efect on the flow. Smooth blade surfaces and favor-
able pressure gradients (acceleration) can cause e stabilizing eflect, while rough surfaces,
adverse pressure gradients, and free-stream turbulence can cause a destabilizing effect on
the boundary layer.

To be able to mode! the transition region found on the suction surface, it is necessary

to define three importent points :
1. Point where transition begins (i.e. end of laminar region)
2. Point where transition ends (i.e. transition length)
3. Transition path (i.e. intermittency function 4, distribution in the transition region)

The models used in this study to define the above mentioned points are listed below.
4.4.1 Transition origin (start) models

Five analytical models for the prediction of traunsition origin were tested against avail-
able expetimental data, the goal being to select the best model that predicts the start of

transition on the suction surface. These five models are analytically summarized below,
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along with brief comments when appropriate. A full discussion of each model will not be

given here for the purpose of brevity.

1. Schlichting [24]

This model is represenied by :

v v

vé _ {%} (4.13)
crit

This transition start model was explained in detail in chapter 3. The above
equality is valid at the point of instability. Thus when using this model, it is
assumed that the point of transition coincides with the point of instability.

The quantity {g-f'-} " is a function of the shape factor A as seen from figure (3.5).

ort

This figure is used to create Subroutine CRITCL which tabulates the values of

{m}c’_“ 8s function of A. Thus, at each x station along the blade surface where

[ 4

the shape factor A is being calculated, the quantity {y;&} . is found by calling
Subroutine CRITCL. Furthermore, since the Reynolds number Re;, = Y5 is also

being calculated at each x station, then transition is initiated when the equality

(4.13) is satisfied.

2. Van Driest and Blumer [49]

This model is represented by :

—1 + /1 + 132500 TU3
v/ Reatran = ‘/ = (1.14)

39.2 TUZ,

This is a flat plate type model, which specifies transition origin as a function of free-
stream turbulence only. Sclection of this flat plate model was intended to demon-

strate the use of zero-pressure gradient correlations for nonequilibrium applications.
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Transition is predicted when the computled value for the Reynolds number from the
above model becomes equal to the sutfece Reynolds number Re, = Ye computed

along the blade surface.

. Seyb ]30!

This model is represented by :

1000 [ K +0.09 262

4.
12470 TU, 0.0106 + 3.6 TU. (4.15)

Reﬁ; Jfran =

where K is the velocity gradient parameter, X = %%, and TU, = :—L = %,L (i.e.
local boundary layer edge free-stream turbulence level found from equation (4.7)).
This model is based §n the airfoil measurements of Goldstein and Mager [50],
Crabtree [51], and Hodge [18] such that, over the investigated range —0.1 < K < 0.1
the transition value of Res, is insensitive to increases in TU. above 0.04 and to

reductions below 0.015.

Thus, this model was tested in this study using the upper and lower limits for TU.

(i.e. 0.04 and 0.015 respectively) es suggested by Brown and Burton [21], ie.,

TU, if 0.015 < TU, < 0.04 (4.16)

0.015 if TU, < 0.015
TU, =
0.04 if TU, > 0.04

Seyb’s model for transition origin is a function of both free-stream turbulence in-

tensity, TU,, and pressure gradient, K.

. Dunham {47]

This model is represented by :

Reg,sran = [U.27 + (LT3 exp (—80 THU‘)]

x [550 + 680 (1 — E)”'] (4.17)
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where :

g | (@ K-100T0) it (21 K -100 TU) <0.75
I WA if (21 K —100 TU) > 0.75

This model, like Seyb’s predicts transition origin as a function of both free-stream
turbulence intensity (average value, defined by equation (4.8)) and pressure gradient

parameter K.

5. Abu-Ghannam and Shaw [52]

This model is given by :
Res, ran = 163 + exp [E (K) (1 - TU/0.0691) ] (4.18)

where :

E(K) = 6.91 +12.75 K +63.64 K* if K <0.0
B 6.91 +2.48 K—-1227T K* if K>00

The development of this model was based on extensive experimental data taken by
the above authors, where both pressure gradient and free-stream turbulence level
were varied. In form, equation (4.18) is similar to the transition origin model of
Iall end Gibbings [53] but more generalized.

Each of the last three models will predict transition start when the computed value
for the Reynolds number Res, gqn from equations (4.15), (4.17) or (4.18) equals the

surface Reynolds number Res, = U—f‘- computed along the blade surface.
4.4.2 'Transition length models

Following are descriptions of the two transition zone length or endpoint models tested.

The common feature of these two modcls is that the transition zone length is defined
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in terms of an appropriate transition origin Reynolds number. This implies that the

accuracy of these length models depends on the accuracy of the transition origin model

used.

1.

Dhawan and Narasimha [48]

This model is given by :

Reg =5 Rel? (4.19)

e,fran

Where :

d= (‘”lw.:o.ns — ml-y.:o.zs)

This model defines the actual zone length Reynolds number based on 25% to 75%
intermittency. As discussed earlier, for ease of implementation into a computer
program and/or systematizing definition, the models were all used in a modified
form, where the characteristic length scale, L, was defined as 0—997% intermittency
as in equation (4.10) (also referred to as the total transition length). Therefore,
based on the total length and using equation (4.12) (i.e. L = 3.36 d), the Dhawan

and Narasimha model becomes :

Rep = 16.8 Re?

e fran

L = Fquation(4.10) (4.20)
and,
Rex,end = Rem,tmn + Rey,

where as defined before, Re, ns is the surface distance Reynolds number, which

defines the end of the transition zone.
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2. Debruge [54]

This model is given by :

Req = 0.005 Rel?® | d = Equation(4.11) (4.21)

e, tlran

Agein this model was used in the following modified form (using L = 3.36 d},

. Rey =0.0168 Rel?® L = Equation(4.10) (4.22)

&, tran ?

and,

Rem,end = Ren,trun + REL

Equations (4.20) and (4.22) are shown in figure (4.3) together with the experimental
transition measurements of Brown and Burton [21] and Martin [55]. The Brown and
Burton measurements are scattered around the modified Dhawan and Narasimha length
model line, while Martin measurements fall somewhat below this line, but well above
that of Debruge length model, i.e. equation (4.22).

Figure (4.4) showing Re, .« 88 a function of Regren includes Abu-Ghannam and Shaw
[52] experimental results for zero and non-zero pressure gradients as well as the above
mentioned data of Brown and Burton [21] and Martin [55]. Equation (4.20) is also plotted

and agrees well with the results for both zero and non-zero pressure gradients.
4.4.3 Transition path models (Intermittency)

The two models used to define the intermittency function -, are listed below. Again, these
models were redefined, where necessary, in terms of the total transition zone length, L,

given by equation (4.10).
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1. Dhawan and Narasimha [48]

Dhawan and Narasimha measured the intermittency factor during transition by
photographing the hot-wire signal as it appeared on the screen of an oscilloscope.
The intermittency fector was then deduced by dividing the time that the signal
showed bursts of turbulence by the total sampling time. The intermittency function

relation of Dhawan and Narasimha 1s :

— 2
4o =1 —exp [—0.412 (”—?—32) ] (4.23)

Where :

d = Equation(4.11)

z and 4., correspond to local physicel location along the surface and physical
location of the transition origin point, respectively.

Redefining equation (4.23) in terms of L using equation (4.12) yields,

g =1~exp [—4.65 (3—15’—'-—1)2] (4.24)
Where : L = Equation(4.10) <= (Zend — Tiran)
or equation (4.24) can be written as :
7 = 1~ exp [~4.6577] (4.25)

Where: T = (—ﬂ“ﬂ—)

Egnd —Tiran

. Abu-Ghannam and Shaw [52]

Abu-Channam and Shaw deduced their intermittency function relation from
the amplitude density function of the hot-wire signal which was digitally measured
using the amplitude probability analysis system, and which is defined as the per-

centage of time the signal lies wilhin a small window. Signals inside the window

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



represented laminar flow and those outside the window represented turbulent flow.
Abu-Ghannsm and Shaw used their experimental results together with numerous
other measurements with different pressure gradients and turbulence intensity levels

to derive the following relationship for the intermittency function.
Y = 1. — exp (-4.65 X°) (4.26)

Where : T = ( Rey—Reetran )

Rﬂ-,nut =fen,tran

This model differs from the previous one in that Reynolds numbers are used in
place of physical surface distances and the non-dimensional quantity T is raised to
8 Ciible powet.

Equation (4.26) together with equation {4.25) are plotted in figure (4.5). From the
experimental data shown in this figure it can be concluded that the pressure gradicnt has
no effect on the +, distribution.

In concluding this presentation of the intermittency models, it should be noted that, as
defined, 7,, assumes that transition origin and length in[ormatio.n are known. Therefore
it can be concluded that the above intermittency representations are only as accurate as

the models developed for transition origin and length.
4.5 Turbulence viscosity (ury) models

In this study it became apparent that the pressure surface experimental heat transfer
data would be very difficult to be predicted assuming fully laminar, fully turbulent, or
a laminar-transition-turbulent flow character. In fact, the pressure sutface experimental
heat transfer data lies in between the fully laminar and the fully turbulent flow predictions

(measurements are greater than laminar predictions end lower than turbulent ones).
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These observations forced the modeling effort toward development of a model that would
give better pressure surface predictions. As a first step, the concept of a natural transition
tlike that on the suction surface) occurring on the pressure surface was eliminated. It was
argued that if trensition models pf the type given in the previous section for the suction
surface are considered reasonable for predicting natural transition on the pressure surface,
then the pressure surface was not undergoing natural transition because no transition
model tested produced satisfactory pressure surface predictions.

As mentioned earlier in this chapter, the flow over the entire pressure surface is modeled
to be laminar but with the calculations being based on the effective viscosity formulation
given by equation (4.6). Thus, dropping the concept of natural transition on the pressure
surface simplifies modeling this surface but forces the turbulence viscosity (jzv) term in
equation (4.6) to model all the turbulent phenomena.

Two turbulence viscosity models extracted from the literature are given below as part
of the effective viscosity definition given by equation (4.6) . These turbulence viscosity
models are used to account for the effects of free-stream turbulence on augmenting the
laminar heat transfer values over the pressure surface.

The idea behind gry formulation is that the characteristic velocity that should be used to
define the velocity scale depends on free- stream turbulence intensity. To further explain
the concept of pry, reference is made to Spalding [56] for modeling both the turbulent

viscosity (s.) and the turbulence viscosity (prv ), as follows :
prv, e = p-(Length Scale) .(Velocity Scale) (4.27)

Spalding suggested that the difference between turbulent (y¢y) and turbulence (yry) vis-

cosities is in the assumed velocity scale. Furthermore, Spalding suggested that the proper
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velocity scale to be used to define (p,) is given by:

Velocity Scale = (Length Scale). g—:l (4.28)
and that for (gry) is given by:
Velocity Scale = (Free Stream Turbulence Intensity) .U (4.29)
Thus, () and (pry) definitions become,
2 au
pe = p.(Length Scale)®. By (4.30)
prv = p. (Length Scale) .(Free Stream Turbulence Intensity).(U) (4.31)

On the basis of equation (4.31) several workers have developed empirically deduced tur-

bulence vigcosity models. Two of these models are given below.

1. Smith and Kuethe [57]

This model is represented by:
pru = 0.0164 p 8§ TU, Uy (1.32)

In this model, the boundary layer thickness §, is the length scale, and TU, Uy is
the velocity scale. This model was actually developed for predicting the eflects of
free-stream turbulence on stagnation region heat transfer to cylinders in cross flow
and was included in this study to test its walidity in-airfoil surface boundary layer

computations.

2. Hylton et.nl [58]

This model is represented by:

iy =Ty + Ty) p & TU, Us (4.33)
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Where :

L = Aé
A = 0.085
TU, = Equation (4.7)
Ty = 0.167
_ R81 Reg, )3
T‘: - (REz 44
_-R_ei — (p°° UOO /p'°° )inlet
Re, (Poo Use /oo )eei!
5.
Res, = Ués
",G

In the above model, use of the local value of free-stream turbulence intensity, TU.,
in defining velocity scale partially accounts for the effects of curvature implicitly.
Note that T; is function of the inlet-to-exit unit Reynolds number ( nnity Jength
scele) ratio (Re;/Re,). Here inlet and exit refer to nominally uniform upstream
and downstream flow conditions for the blade row.

The function of the term (T} 4 T3) is to model the complete surface distance from
the stagnation point to the trailing edge. Ty term models the leading cdge stag-
nation region while 7; models the rest of the blade surface. The definition of T
as indicated above represents a somewhat tuned fu_nction and demonstrates that
the momentum thickness §, is actuslly used as a length scale in defining a local
momentum thickness Reynolds number. Thus, when the local boundary Inyer edge
velocity U is small (i.e. near the leading edge in the stagnation region), 73 is rel-
stively small. Therefore, in the region near the stagnation point where U (and

likewise Res,) is small and TU, = TUe, equation (4.33) reduces to a similar model
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like that of equation (4.32), i.e. cylinders in cross flow model. This reduction in the
influence of T} in the leading edge region is further accelerated because, as defined,
Ty o (Res, [44)°.

Further downstream, the momentum thickness increases inducing higher values of
T, which will counterpart the reduction in TU,. Therefore, Ty and T; may be viewed
relatively as low and high Reynolds number functions.

Hylton et.al [58] derived this model using exiensive airfoil experimental data ( in
particular laminar pressure surface data) and as it will be seen latter, this model is

expected to yield the best results.

4.6 Evaluation of transition region and turbulence
viscosity models

The several models discussed in the previous sections for defining transition origin,
length, and path (intermittency) and turbulence viscosity were added ss modifications
to the integral method computc;: program, and an evaluation task was initiated. The
evaluation activity involved definition of combinations of models, generation of solution,
and comparisons with experimentsl data. The procedure used to evaluate the literature
models given in the previous sections is briefly discussed below.

The computational scheme used to evaluate the models is given below in the order in
which solutions were computed and were compared with a given set of experimental data

for determining the "best” combinations.
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Step No. 0 Choose experimental data (i.e. heat transfer coefficient
distribution along the blade) taken at known operating
condition (i.e. blade row inlet operating conditions and
boundary layer edge velocity conditions distributions).

Step No. 1 For a base-line, compute laminar and turbulent solu-
tions using the integral method outlined in chapter 3
without any of the present chapter models. Compare
with experimental data.

Step No. 2 Determine "best” transition origin model. That is, com-
pute solutions using different origin model each time
with no length or path (intermittency) models. Com-
pare with experimental data. Choose "best” model.

Step No. 3 Determine "best” transition length model. That is,
compute solutions using a different length model each
time but with a common "best” {(step no. 2} origin
model and common path (intermitiency) model. Com-
pare with experimental data. Choose "best” model.

Step No. 4 Determine "best” transition path (intermittency, .}
model. That is, compute solutions using a different path
model each time but with the same "best” (step no. 2)
origin mode! and "best” (step no. 3 ) length model.
Compare with experimental data. Choose "best” model.

Step No. 5 1If available choose a different set of experimental data
(i.e. heat transfer coeflicient distribution along the
blade) taken at another known operating condition {i.e.
blade row inlet operating conditions and boundary layer
edge velocity conditions distributions). Compute one so-
lution using "best” combination of models from step 4.
Compare with experimental data.

Step No. 6 Repeat step 5 until comparison for some experimental
data set is unacceptable (in this case, use this data set
and return to step 1) or all experimental data sets have
been predicted. In this case, step no. 4 models are the
best for all experimental data included and evaluation
terminates.

The order in which the transition models is determined in steps 2, 3, and 4 is impor-

tant because the models evaluated in the higher number sicps are functions of resulis

obtained from models in previous steps. For example, path (intermitiency, %) models
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are functions of transition origin and length variables previously determined.

Step No. 0

Step No. 1

Step No. 2

Choose experimental data (i.e. leat transfer coeflicient
distribution along the blade) taken at known operating
condition (i.e. blade row inlet operating conditions and
boundary layer edge velocity conditions distributions).

For = base-line, compute laminar and turbulent solu-
tions using the integral method outlined in chapter 3
without any of the present chapter models. Compare
with experimental data.

Determine "best” turbulence viscosity ( pry) model.
That is, compute solutions using different pry models
each time but with po transition (i.e. the flow is arti-
ficially considered to remain laminar all over the blade
with no transition and turbulent modeling. Therefore,
this step is a direct test of the ability of the pry models
to model all the turbulent phenomena). Compare with
experimental data. Choose "best” model.

81
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Chapter o
DISCUSSION OF RESULTS

5.1 Experimental data base

In order to assess the predictive capability of the present integral method and models,

all the following items should be available :

1. Boundary layer edge velocity (pressure) distribution along the blade surfaces.
2. Blade geometry.
3. Blade row inlet and outlet conditions.

4. Corresponding (to the above conditions) experimental heat transfer cocfficient dis-

tribution along blade suction and pressure surfaces.

The results of an experimental study of aerodynamic (surface velocity) and heat trans-
fer distributions over the surfaces of a turbine nozzle guide vane were kindly supplied by
Dr. D. A. Nealy, Chief of the heat transfer section, Detro.it Diesel Allison, General Mo-
tors Corporation {22]. .

Figure (5.1) shows the blade surface velocity distribution computed hy Nealy {22] us-
ing the two-dimensional inviscid blade-to-blade time dependent Euler equalion solver of

Delaney [45]. This inviscid code uscs the experimental static pressure distribution shown
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in figure (5.2) to yield the velocity distribution.

The geometric information of the blade tested in this study is as follows :

Leading Edge Diameter = 2.336cm = 0.92in = 0.0767 fi
Trailing Edge Diameter = 0.346cm = 0.136in = 0.01133f¢
Blade Height = 7.62cm = 3in

Suction Surface Arc Length = 17.782¢cm = 7.00lin = 0.5834 ft
Pressure Surface Arc Length = 13.723cm = 5.403in = 0.4503 f¢
True Chord = 14.493cm = 5.706in = 0.4755 ft

Axial Chord = 7.816cm = 3.07Tin = 0.2564 ft

The three vane cascade inlet and outlet conditions are as follows :

Cascade inlet total pressure = F, = 35.58psia
Cascade inlet total temperature = T, = 795° K = 1431°R
Cascade or vane row inlet Mach number = A, = 0.17
Upstream or vane row inlet Reynolds number = Re; = 0.39 x 10°

’
Downstream or vane row exit Mach number = Af; = 0.92
Downstream or vane row exit Reynolds number = Re, = 1.51 x 108
Vane row inlet free-stream turbulence intensity = TU,, = 6.55%

Average wall-to-gas temperature matio = T, /T, = 0.81
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5.2 Aerodynamic and temperature results

The blade velocity distribution shown in figure (5.1) indicates the fundamental aero-
dynamic difference between the suction and pressure surfaces. The first 25% of the
suction surface length is characterized to have a strong favorable pressure gradient (ac-
celerating flow) followed by an adverse pressure gradient region and finally a moderate
favorable pressure gradient region. On the other hand, the pressure surface is character-
ized to have a favorable pressure gradient from the leading to the trailing edges. Later,
it will be shown that these pressure gradient types will strongly affect the shape, level
and distribution of the heat transfer coeflicient 8s well as the boundary layer momentum
thickness. Furthermore, the boundary layer on the suction surface is expecied to undergo
transition near the minimum pressure point ( maximum velocity) where the pressure gra-
dient changes from favorable to adverse. On the other hand, the boundary layer on the
pressure surface is expected to remain laminar all over the surface length.

Figure (5.2) shows the experimental static pressure distribution along the blade sur-
faces together with the predicted distribution by channel flow theory (i.e. equations
(3.1-3.2)). Perfect prediction is obtained on the pressure surface, while on the suction
surface, deviation between prediction and experiment starts near the point of minimum
pressure (expected transition point), but still the trend of the theoretical curve is exactly
the same as the experimental one and the accuracy of the predicted values of static pres-
sure are acceptable. The importance of these predictions of static pressure is that they
are used together with the boundary layer edge temperature predictions shown in figure
(5.3) to call subroutine PROPER and thus obtain the properties of air (Cy, pr, Pr and

p) at each x station along the blade surfaccs.
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Figure (5.3) shows the experimental blade well temperature distribution together with
the predicted distribution of both the boundary layer edge temperature and the adiabatic
wall tempereture. On the suction surface, the gas temperature (i.e. boundary layer edge
temperature) starts to decrease from the leading edge up to the point of minimum pres-
sure. This behavior is expected since in this region very high acceleration exist and thus
thermal energy is being converted to kinetic energy. Further downstream and beyond the
minimum pressure point, the gas temperature starts to increase due to the deceleration
eflect of the flow. This increase is then followed by a decrease in the gas temperature
but at a slower rate than that found in the leading edge region. On the other hand
the gas temperature distribution along the pressure surface was found to remain almost
constant along the first 50% of the surface and then to experience a slow decrease due to
the moderate acceleration over the entire surface distance.

The suction and pressure surfaces experimentel blade wall temperaturc is scen to remain
almost constant although it starts to incresse near the blade treiling edge. The reason
for this increase is due to the presence of small size cooling tubes which run inside the
blade body along its height. Finelly, and as it is known, the driving force for hcat trans-
fer at each z station along the blade is the difference between the gas and blade wall
temperatures.

Also shown in figure (5.3) is the adiabatic wall temperature distribution. For an adiabalic

wall, the temperature distribution across the boundary layer is given by [24]:

T(y) =T, + =0 (U? - v?) (5.1)
2,
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Where 7, denotes the temperature at the outer edge of the boundary layer. Consequently

the adiabatic wall temperature T = Tpq for v = 0 is given by:

Uz
=T + — 5.2

Thus, the quantity, Tog — T, = %, represents the temperature increase of an adiabatic
well which is due to frictional heat. The distribution of the quantity (T,4 — T.) is shown
in figure (5.3).

This adiabatic wall temperature results from two situations:

1. The increase in temperature of the fluid as it is brought to rest at the surface while

the kinetic energy of the flow is converted to thermal energy.

2. The heating eflect due to viscous dissipation.
5.3 Turbulence intensity results

Figure (5.4) shows the variation of the local boundary layer outer cdge free stream
turbulence intensity, TU,, calculated from equation (4.7). Also shown in this figure are
the constant blade row inlet turbulence intensity, TUe, and the average value T7U. The
difference between the suction and pressure surfaces distribution of, TU,, is quite evident.
On the suction surface and as a consequence of the rapid acceleration near the stagnation
point, TU, is decreased to about 40% of its inlet value in a very short surface length and
remains constant thereafter. This distribution is quite typical for suction surfaces and
points to the importance of using local values of Lurbulence intensity (i.e. TU.), especially
for transition calculations, rather than a characteristic reference value (i.e. TUg). On

the other hand, TU, remsins constant (and equal to TUs) over the first 35% of the
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pressure surface length and then decreases gradually to a value equal to 40% of its inlet
value at the end of the surface. Thus, it could be concluded that the pressure surface has

higher values of turbulence intensity then the suction surface.

5.4 'Transition start models results

This section tends to illustrate how each transition start model predicted transition.

Figure (5.5) shows the distribution of the surface Reynolds number ([te.) nlong the
blade surfaces. Also shown in this figure is the distribution of the Van Driest and Blumer
model for (Re,tran) computed from equation (4.14). This model indicated very early
transition on both surfaces due to its dependence on the inlet free stream turbulence
intensity, TU,,, rather than TU,. The value of (Re, tran) computed from this model is
(18481.7).

Figure (5.6) shows the distribution of the momentum thickness Reynolds number
(Res,) based on laminar flow assumption. Also shown in this figure is the distribution of
the Seyb, Dunham, and Abu-Ghannam and shaw models for (Res, tran) compitted from
equations (4.15), (4.17) and (4.18) respectively. Each model indicates transition when its
Res, sran curve intersects the fles, curve. Thus, it is noticed that Seylb model indicated
transition only at the suction surface, while Dunham, and Abu-Ghannam and shaw mod-
els predicted transition on both the suction and pressure su?fa.ces. Furthermore, Dunham,

and Abu-Ghannam and shaw models indicated late transition on the pressure sutlace.

& ar

v dr

Figure (5.7) shows the computed distribution of the shape factor parameter I =
slong the blade surfaces. In this figute, /{ values hased on laminar flow assumption is

shown for both the suction and pressurc surfaces. Furthermore, K wvalues based on
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" laminer flow assumption but with computations being based on the effective viscosity
formulation (i.e. fress = gt + pru) is also shown for the pressure surface. It is interesting
to note that, for the pressure surface, the same values of K is obtained whether the flow is
being treated as laminar or es laminar but with p replaced by jresy = g+ pry. This fact
is due to the unchange in the magnitude of the quantity (& /v) whether computations
is being based on g or (eyy = £ + pru). The tormented shape of the K parameter
distribution is attributed to the dependence of K on % which undergoes abrupt changes
along the blade surfaces and espef.:ially on the suction one. Furthermore, the values of the
K factor shown in figure (5.7) are used in the transition start models (equations (4.15),
(4.17) and (4.18)) to compute the Res, tron distribution shown in figure (5.6).

Figure (5.8) shows the distribution of the shape factor K based on laminar, turbulent
and traneition et & point flow assumptions. The suction surface transition at a point so-
lution is based on Schlichting transition start model, equation (4.13), which is considered
to be the best model tested in this study as it will be shown later.

Figure (5.9) shows the calculated distribution of the boundary layer displacement
thickness, §,. These calculated values of §; are used to calculate the distribuiion of the
displacement thickness Reynolds number, Res,, shown in figure (5.10). The importance
of figure (5.10) is that it furnishes the left hand side of Schlichting transition start model
given by equation (4.13).

Figure (5.11) shows the calculated variation of the first shape factor A = £92. These
calculated values of A ere then used to call subroutine CRITCL to obtain the correspond-
ing distribution of the critical displaccment thickness Reynolds number {'—J—j‘-}c,;; shown

plotted in figure (5.12). Thus, the right band side of Schlichting transition start model is
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now calculated. As itlmay be seen from figures (5.10) and (5.12), for the suction surface
and for small z/arc values, Re; is smell and Res, oie = {Q.-fl}cru is large. As z/arc
becomes larger, this relationship is inverted and consequently Res, it decreases while
Re;, increases. Eventually, these two quantities (Re;, and Reg, i) become equal and
yield the transition point on the suction surface as computed from Schlichting model. On
the other hand, the Rey, .»¢s values over the pressure surface is always greater than the
Reg, values, and thus no transition is predicted on the pressure surface using Schlichting

model.

5.6 Heat transfer coefficients predictions

The heat transfer prediction results obtained through the evaluation procedure out-
lined in s.cction (4.6.) are shown in figures (5.13) through (5.17).

Figure (5.13) shows the experimentally determined heat transfer coeflicient distribu-
tion for the set of operating conditions outlined in section (5.1) together with suction and
pressure surfaces evaluation process step No. 1, outlined in section (4.6). As scen from
this figure, the pressure surface experimental data lies in between the fully laminar and
fully turbulent predictions. Furthermore, the laminar prediction, although underpredict
the experimental data, has the same trend.

Figure (5.13) also includes the pressusre surface evaluation process step No.2 (i.e.
modified solution results using turbulence viscosity models). Both turbulence viscosity
models gave excellent representation of the experimental data. The model of Hylton etal.
is selected as the best one since it gave betier resulls in the last 50% of the sutlace length

where the results of the model of Smith and Kuethe starts to deviate from experiment.
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On the suction surface, figure (5.13), shows that the laminar solution agrees well with
experimental data up to the experimentally determined transition point. The change in
the curvature of the laminar solution (from concave up to concave down) is due to the
high flow acceleration in this portion of the surface length.

The determination of the best transition origin model (suction surface step No. 2) is
shown in figures (5.14) and (5.15). Note that the laminar solution is repeated for compar-
ison purposes. For these solutions, no length or path models are used (transition region
is treated es a point). As seen from figure (5.14), both Dunham and Abu-Ghannam and
shaw models predicted transition on the suction sutface with good accuracy, however,
these two models are not selected as best since they have predicted transition on the
pressure surface.

Figure (5.15) shows that the model of Van Driest and Blumer predicted early transi-
tion on both the suction and pressure surfaces, thus its solution curve looks like the fully
turbulent flow assumption one shown eatlier in figure (5.13). Also showln in figure (5.15)
are the results of Schlichting and Seyb models. These two models are considered to be
the best since they have predicted transition only on the suction surface and with very
good accurecy. Furthermore, and as seen from figure (5.15), Schlichting modecl is selected
to be more accurate than Seyb’s and thus it is considered to be the fixed transition start
model for the solutions shown in figures (5.16) and (5.17).

The determination of best transition length model (suction surface step No. 3) is
illustrated in figure (5.16). For these solutions, the fixed transition origin model was that
of Schlichting (as determined above), and the fixed (but not yet determined to he best)

path (v;) model was that of Abu-Ghannam and Shaw. The length medel of Dhawan and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



92

Narasimha was selected to be the best, since Debruge model underestimated the length
of trensition (transition was predicted to end more rapidly than the measurements indi-
cated). Also, in this figure, the solution based on transition at a point assumption using
Schlichting transition origin model is repeated for comparison purposes (i.e. whether
transition is at a point or a region).

The determination of best path (v,) model (i.e. suction surface step No. 4) is shown
in figure (5.17). In these solutions, fixed transition origin model was that of Schlichting.
Furthermore, although the Dhawan and Narasimha length model was selected to be bet-
ter than that due to Debruge, solutions based on Debruge length model is also shown in
this figure. Thus, fouf combinations of solutions are presented (i.e. combinations using
two length and two path models). From this figure, it was concluded that the Dhawan
and Narasimha path model when combined with Dhawan and Narasimha length model
(solid curve) gave better predictions than that obtained using Abu-Ghannam and shaw
path model combined with Dhawen and Narasimha length model. Thus, the Dhawan
and Narasimha path model is selected to be the best.

Figure (5.18) shows the distribution of the intermittency factor (y:) from the point
where Schlichting transition origin model indicated transition. These distributions are

used in equation (4.1) to yield the solutions shown in figure (5.17).

5.6 Momentum thickness results

The predicted momentum thickness results corresponding to the operating conditions
outlined in section (5.1) and which is obtained through the evalnation procedure outlined

in section (4.6) are shown in figures (5.19) through (5.22). Before going through these
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figures, it should be noted that the procedure is now a computational one rather than
being an evaluation one, since no experimental data are gvailable for the momentum
thickness parameter (i.e. the experimental data base supplied by Dr. Nealy [22] does not
include momentum thickness experimental data). Thus, discussion is only given to the
theoretical prediction curves with brief comments on the expected experimental irends.

Figure (5.19) shows the pressure surface computational process step No.1 and 2. For
this surface, it is expected that the experimental data trend will lie in between the fully
laminar and fully turbulent flow prediction results. With this assumption, the turbulence
viscosity models solutions will overestimate the expected experir-ncntal trend for the first
40% of the surface length while giving good predictions for the rest of the surface length.
Furthermore, from the suction and pressure surfaces fully laminer and fully turbulent

flow predictions given in figures (5.19) and (5.20) the following observations are noted:

1. The suction and pressure surfaces have quite different shapes of the momentum
thickness distribution. This fact is due to the different surface curvature between
the suction and pressure surfaces. The convex curvature of the suction surface
enhance the growth of the boundary layer momentum thickness while the concave
curvature of the pressure surface retards the growth of the boundary layer after 2
short enhancement in the leading edge region. Of course, these surface curvature
effects are translated or sensed by the computer program using the input velocity
boundary conditions distribution shown in figure (5.1). Thus, as mentioned eatlier,
in section (5.2), the velocity boundary conditions (or the pressure gradient distri-
bution) have indeed the strongest effect on the shape and the level (as seen below)

of the momentum thickness distribution.
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2. The suction and pressure surfaces have quite different levels of the momentum
thickness distribution. The boundary layer over the suction surface is being char-
acterized to be thick while that over the pressure surface is characterized to be thin.
This fact is illustrated in figure (5.19) where the suction sutface laminar solution of

_the momentum thickness has the same order of magnitude as the turbulent solution
of the momentum thickness for the pressure surface. This observation is also clear
by comparing the Jaminar and/or turbulent momentum thickness solutions of the

suction and pressure surfaces found in figure (5.20).

Figures (5.20) and (5.21) shows the suction surface computational process step No.
1 and 2 (i.e. step No. 1: fully laminar and fully turbulent solutions, step No. 2: tran-
sition at a point solutions). The fully laminar and fully turbulent flow predictions for
the pressure surface are repeated for comparison purposes with suction surface results.
Again for these solutions, like heat transfer results, no length or path models are used
(i.e. transition region is treated as a point). Once again, and referring to figure (5.20),
the transition origin models of Dunham, and Abu-Ghannam snd Shaw are not selected
because they have predicted transition on the pressure surface. Furthermore, the solu-
tions based on Van Driest and Blumer transition origin model are not shown because
this model indicated very early transition on both surfaces, thus its solulion curves will

not differ from the fully turbulent ones.

In figure (5.21) the solutions based on the best transition origin models (i.e. Schlicht-
ing and Seyb models) determincd in section (5.5) (i.e. from heat transfer results and
measurements) are shown. Although, experimental values of momentum thickness are

not available to judge the performance of these two models, it is expccted that they
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will give good representation of reality. This dlaim is most probably true, since when
defining the transition point of the flow using any available boundary layer parameter
measurements together with the above mentioned models, then the result (i.c. predicted
transition point) should be valid for all other boundary layer parameters.

Figure (5.22) shows the suction surface computational step No. 3 and 4. In these
solutions, fixed transition origin model was that of Schlichting. Furthermore, nlthough
the Dhawan and Narasimha length and path models (solid curve) where selected (from
heat transfer experimental results) to be the best length and path models, solutions
based on the two length and two path models used in this study are presented (i.e. four
combinations of solutions). Furthermore, it is noticed that the momentium thickness so-
lutions based on these four combinations of models are closer to each other than those
corresponding to heat transfer shown in figure (5. 17), thus it could be concluded that
momentum thickness predictions results are less sensitive to the choice of the length and
path models.

Finally, it is believed that while the transition length and path models where found
necessary to model the suction surface heat transfer coeflicient distribution during tran-
sition (i.e. to model transition as a region), the transition at a point assumplion (i.c.
transition region is considered a point) may be enough as far as the momentum thickness

predictions are concerned.

5.7 Other boundary layer parameters results

Figure (5.23) shows the calculated distribution of the boundary layer thickness, (4).

These calculated values of § ere uscd lo calculate the distribution of the first shape
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factor, A = %’-‘f—‘,z-, previously shown in figure (5.11). Unfortunately, the integral method
of solution outlined in chapter 3 is not capable to solve for the fully turbulent value
of the boundaty layer thickness, §. Thus, computational process for this parameter is
terminated.

Similarly, figure (5.24), shows the calculated variation of the thermal boundary layer
thickness distribution (7). These distributions are used in equation {3.51) to obtain the
heat transfer coefficient distributions based on laminar flow assumption and/or laminar
flow assumption but with computations being based on (s.ss). Furthermore, comparing
the relative values of § end ér from figures (5.23) and (5.24), it is clear that the thermal
boundary layer always contains inside it the velocity boundary layer (i.e. ér > §), which
is the case for air with Pr = 5—"; <L

Finally, the momentum thicknees Reynolds number prediction resulls arc shown in
figures (5.25) through (5.27) with the same computational steps as that used for the
momentum thickness. No further discussion shall be given to these figures, since almost
the same comments and observations of the momentum thickness resnlts arc applicable

to these figures.
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Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions

The followings are the important results of the present investigation :

1. The general unmodified integral boundary layer method outlined in chapter three,
although capable to solve both fully laminar and fully turbulent flows, is inadequate
for direct application to the gas turbine airfoil heat transfer prediction problem. The
reasons supporting this conclusion were related to the lack in this integral method
to model the transition region on the suction surface and the laminar heat transfer

augmentation on the pressure surface due 1o free stream turbulence intensity effects.

2. The specification of accurate free-stream velocity (pressure) boundary conditions
for boundary layer methods is essential for two importtant reasons: First, houndary

layer integral method solutions are very sensitive to the pressure gradient charac-

teristics of a gas turbine nirfoil (eg. tramsition start is mainly dependent on the
pressure gradient distribulion). Secondly, resolution of the inviscid flow field in
the vicinity of the stagnalion point is esseniial in determining accurate stagnation

point heat transfer level.
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. Airfoil stagnation point heat transfer prediction method, which implicitly assumes
the behaviour of cylinders in cross flow are quite satisfactory for direct use in a gas

turbine blade cascade prediction method.

. In general, commonly available transition process models (origin, length and path
(intermittency)) were found to be adequate for providing a consistent representation

of the experimental data over the suction surface.

. Transition origin models gave reasonable results over the suction surface where nat-
ural transition appears to be a valid concept. However, transition origin predictio:ts
were inconclusive over the breasurc surface where the concept of natural transition
appears questionable. For the suction surface, Schlichting transition start model
gave the best predictions followed by that of Seyb. These two models are considered
to be the best because they gave quite satisfactory results on the suction surface

and no transition on the pressure surface.

. Extended regions of boundary layer transition do exist on suction surfaces of turhine
blades in cascade. Thus, transition at a point assumption will reflect low quality
predictions. The assumption of an sbrupt transition from laminar to turbulent flow
regime leads to overcooling precisely in the area where the heat transfer coeflicient

is actually the lowest. This situntion, of course, induces high stresses in the blade.

. The free stream velocily distribution, whicl is a direct result of the blade shape, is
the most significant parameler aflecling the start and length of transition and the

general level of heat transfer.
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For the suction surface, it was concluded that the moderate levels of turbulence
intensity present in the boundary layer prior to transition do not have a great
influence on both the start and the development of the transition process initiated

by an adverse pressure gradient.

On the suction surface, heat transfer coeflicient predictions in the fully turbulent
region predicts higher values than the experimental data. On the other hand, the

predictions in the laminar region agrees very well with experiment.

The distribution of the heat transfer coefficient on the suction side of turbine blades
is governed mainly by the onset of the laminar-turbulent transition. This process

in turn is controlled by the local value of the pressure gradient.

On the pressure surface, transition usually starts very near the leadiug edge because
of the high relative turbulence intensity on this side of the blade. After this start,
there is a balance between the free-stream turbulence and the favourable pressure
gradient effects, the former tends to promote and the latter to retard the transition
to fully turbulent flow. Due to the relaminarizing effect of the pressure gradient,

the boundary layer does not become fully turbulent on the pressure surface.

Transition length models, which are functions of transition origin models, lead to
generally satisfactory predictions on the suction surface. Debruge transition length
mode! underestimated the length of transition (i.e. transition was predicted to
complete more rapidly than the measurements indicated} while the Dhawan and
Narasimha length model gave more salisfaclory predictions of the transition zone

length.
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Transition path (intermittency) models, which are functions of both fixed origin and
length models, lead to generally satislactory predictions. When Schlichting transi-
tion origin model and Dhawan and Narasimhe transition length model are used as
the best (and fixed) transition origin and length models, the path (intcrmittency)
model of Abu-Ghannam and Shaw underpredicted the level of heat transfer, while

the Dhawan and Narasimha path model gave more satisfactory predictions.

Turbulence viscosity models were found to be adequate to predict the influence of
free-stream turbulence on & nominally laminar boundary layer developing over the

pressure surface.

Blade curvature has a marked effect on the distribution of the frec-stream turbu-
lence intensity along the blade surfaces. Suction (convex) surface is characterized
to have a very rapid decay in the level of free stream turbulence intensity, while

pressure (concave) surface has a slower decay.

Suction surface is characterized to have a thicker boundary layer than the pressure
surface. Thus drag forces are larger on the suction surface than on the pressure

surface.

6.2 Recommendations

The followings are recommended for future work :

1.

Additional heat transfer and momentum thickness experimental data taken at
known operating conditions are required lo confirm the validity of the present in-

tegral method and models (i.e. transition and turbulence viscosity models}. These
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experiments need not be limited to airfoil geometries but should reflect the pres-
sure gradient and free-stream turbulence intensity characteristics of the gas turbine

environment.

. On the suction surface, the largest deviation between predicted and experimentally
determined values of the heat transfer coefficient occurred in the fully turbulent
region. This deviation is most probably attributed to the relaminarizing effect of
the favorable pressure gradient present in this region. Thus it is recommended to
extend the Von Karman formula for heat transfer in turbulent flows to account
for this phenomena. Such an extension might be achieved by using the relation
between heat transfer and skin friction for turbulent flows with pressure gradients

derived by Gerhart and Thomas [59].

St =
pUC, 2 2

Where T = (v/U?) £,

The above formule was derived by the so called surface renewal and penetration
model, which is based on the assumption that macroscopic elements of fluid (i.c.
eddies) intermittently move from the turbulent core to the close vicinity of the wall,

thus renewing it.
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APPENDIX A

Derivation of the momentum and energy integral
equations for the boundary layer

For steady, two-dimensional, and incompressible boundary leyer flow, the equations

of motion for the boundary layer simplifies to:

Ju v 1dP fu 0

ué-;+05;=—;—zg+u5?—e-é—!;uv) (Al)
Ju Ov
— — A.2
63+3y 0 (A-2)

with the boundary conditions :

y=o0; u=U(z)

Upon integrating the equation of motion (A.1) with respect to y, from y = ¢ (wall)
to y = h, such that y = h is every where outside the boundary layer, the following is

obteined :

h ‘ —
f (u?ﬁ L Uf’-{i) dy = —2 (A3)
y=0 H T P

The shearing stress at the wall r,, has heen substituled for ]L(%)n, go that equation

(A.3) is seen to be valid both for Jaminar and turbulent flows, on condition that in the
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later case u and v denote the time averages of the respective velocity components.
The normal velocity component v, can be replaced by v = ~ f§ (g-f) dy, 28 seen from the

equation of continuity (A.2), and, consequently, the following is obtained :

h du Ou fvOu dU -1,
e e —= | e—dy -U-——)dy =
j ( dz Oy Jo Oz y Ud ) =7

Integrating by parts, the second term in the above equation may be writlen ns,

() amv [ [ i

go that,

Ju Ju dU -7,
.[0 (2u5~m--Ua—z—U?x-)dy‘: P

which can be written in the following form :
h @ dU
[ 5w —wldy+ 5 [((U —v)dy == (A1)

Since in both integrals the integrand venishes outside the boundary layer, il is permissible
to put b — oc.

The displacement thickness § and the momentum thickness §; are defined by :
av:/”w-@@ (A5)
v=0

and,

80 = [ °°0 WU - w)dy (A.6)
.

Thus &, is 2 measure of the displacement of the main strenm resulting from the presence of
the body (blade) and its boundary layer. Similatly é; is » measure of the mamentum Mux
decrement caused by the boundary layer, which according to the momentum theorem, is

proportional to the drag of the body.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



145

It should be noted that in the first term of equation (A.4), differentiation with respect
to z, and integration with respect to y, may be interchanged as the upper limit b is
independent of .

Substituting equation (A.5) and equation (A4.6) into equation (A.4), then

To

d dU
== (U6) + 61U~ - (A.T)

or using the shape factor Hys = &,

To d63

é dU
U3 = + (Ifu 4 2) 2

(A.8)

This is the momentum-integral equation for two-dimensional, incomprenﬁil)!e boundary

layers. As long 8s no statement is made concerning 7, equations (A.7) or (A.8) applies .

to laminar and turbulent boundary layers alike.
Using similar epproach, the energy-integral equation is obtained by multiplying the
equation of motion (A.1) by u and then integrating rom y = 0 to y = h > &(=).

Substituting, egain, v from the equation of continuity (A.2), the following in obtained :

p/ \’ -—--u.—( lrg:d,'y)—uU-*— dy-,u/ u——-du

The second term can be transformed by integratlion by parts :

Lo (5] 0 - 5

Furthermore, by combining the first term with the third term, the following is obtained,

[ [u—ﬂ—tLU— dy-——/ [ - U] dy

Finally, upon integrating the right-hand side by parts, the following is obtnined :

1 d g 9 2 o (gu)’
ip;f—n_'.[n u.(U - )d.y = ﬂ.j(; (a) dy (A.9)
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Again, the upper limit of integration may be replaced by y = o0, because the integrands

2
become equal to zero outside the boundary layer. The quentity p (gy—"-) represents the

energy, per unit volume end time, which is transformed into heat by friction (dissipation).

The term 1p(U? —u?) on the left-hand side represents the Joss in mechanical energy

(kinetic end pressure energy) teking place in the boundary layer as compared with the

potential flow. llence the term %PfoMU(U’ —u?)dy represents the flux of dissipated

energy, and the left-hand side of equation (A.9) represents the rate of change of the flux

of dissipated energy per unit length in the x-direction.

Introducing the dissipation-energy thickness, 83, from the definition :
35 / it 2 _ .2\ g
U8, | u© (U )dy
Rewriting the energy-integral equation (A.9) using the definition of &, then,
-i(Uab’)—Zv/m Ou 2d
= \&) @

or,

d o0 i)
&) =2 [ (5)

(A.10)

(A.11)

(A.12)

which represents the energy-integral equation for two-dimensional, incompressible bound-

ary layer flow.
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APPENDIX B

Literature figures
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APPENDIX C

Integral method Fortran program
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$5999538599599999%
$$ MAIN PROGRAM §$§
$5549999559559998s

This is the main program. It is divided into two basic parts :laminar
boundary layer and turbulent boundary layer. Initially the program
reads in the input data,calculates the initial conditions of the
laminar boundary layer,iterates through the laminar calculations
until transition is reached,then proceeds into the turbulent section
and iterates until the end of the blade is reached. All integrations
are performed in the program and are basically trapezoidal.

AANARARRRARANRARARARARAAARARARRARAR AN R AN ANANAA AR AR A AR AN A AR AA A AR AR LA
RARNARRAR R AR AN R ARN AR AR AR RARRNARAAAARARRNARARARAN AN AR A AR AR A AR A A AR AR

5598895595 59958995995599954855859%8¢
$$ VLOCT(alternate entry CURVE) $$
SSSSS8S855958599559555555598983%

This routine reads in the velocity profile versus surface distance.
It uses the alternate entry to find the velocity and the first and
second derivatives for a glven surface distance .It should be noted
that the first and second derivativee are somewhat inaccurate since
they are based upon a finite length rather than a point .

Uses subroutine TLOOK :

ARAAARAR A AR RN AN R A AN AR AR AR AR R A AR A AR A AR A AN AR R AN AN A AR AR AR Ak
ARAAARRARANRRA R AR R AR ARAAR A AR AR R R AR R R ARANAANAA RN R AN AN kA A Ak

5955859895588
$S DTFRMX $%
$5$955399554s

This routine solves the universal function of DELTA for DELTA greater
than 1.0 .It iteratively solves for the unknown DELTA given H(DELTA).
Uses gubroutine AFQUIR.

AARAR A AR AAR R AR AR AAR AR RN R AN AN RN N AR R A AR AARAR RN AR AR AR AR A A h b h Ak kR
RARAR A AR AR AR AR AR AR AR AN AR AR R AR AR AR RA AR AR Ak A AN

§35599899%%

$$ PRANX $$

59595595988

This routine looks up in a table the constant used in the heat-
transfer equation near the stagnation point as a function of the
prandtl number .

Uses subroutine SRCHX

AR AT AN AR AR AR R A AR AR AR AR A AR AR ANRAAR R AR AR ARk A kA Ak
AR AR AR AR AR AR AR AR AR RN A AN RN AAA AR AR AR A kA b h Ak

$5959998999%
$$ PROPEX $$
$3599559%83%

This routine calculates the viscosity,density,prandtl number,and
speclfic heat of air as a function of temperature and pressure
Uses subroutine PROCOM and TLOOK .

YT 2232 2.22 22222223 2233 2 XSRS R 2R 22X SRR SRR SRR R R R R0 R0 AR
AARRAAAANRAARARANRARNARARANRRAR AR AR R AR AR ARARA AR AR R AR ARk A AR AR AN RN AR

$999555559%%
$$ TLOOKX $$

$I599995899%%

The function subprbgram TLOOK 1s a general purpose routine to perform
a table look-up in a two-dimensional table (dependent variable versus
independent variable).It first locates the input independent variable

All Rights Reserved - Li'brary of University of Jordan - Center of Thesis Deposit
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in its table,then takes the nearest’N'pairs of points and calls sub-
routine LAGRNG. This program uses an interpolating polynominal of
degree’N-1¢,in the Lagrangian form,to evaluate the dependent variable.
TLOOK also has the capabl?ity of remembering where it found the inde-
pendent variable in the table . Thus,search time is gsaved when the
next time it is called the independent variable has changed only
slightly.

Uses subroutine LAGRNG.

****i**i*t*i*ﬁ!*i****ii*ii**ﬁi*lﬁi*****i**iiii**i*********iil*****i***
ANRARRRARARAAR A AR AR RN R AR RN AR TR ARRARA AR T RRNRANRARA AR A AR AN R A AR A A AR

$3599599%9%%
$$ LAGRENG $§

$$5559554849%8
See description of TLOOK

AARARARANAAARRARARANRANR R AR AR AR AR AR AR AR AR AR A ARk h Ak kAR ihhd
RAARAARRAANRRANR A AR RARRARR A RN AR R A AR R AN R AN R AR R AR R A AR hdkhdddddkhhhk

$55585853894¢
$S BRCHXX $$

933558595998

This subprogram is a table lookup routine using linear interpolation.

FRAAARAAR AR AARRANARRR AR ARRARNARARRARR AR AR AR AR ARA Rk AR h AR b h ki
AAARARAARARANARANRAR R A AR AR ANRRARRARAANAR RN AR AR R A R ARk hhh b hhhh

$95999999%%8

$$ PROCOM $%

$5955995595$

This routine calculates the thermodynamic properties of air or air-.
JP4 mixtures,Given temperature and fuel-air ratio,it calculates speed
of sound,ratio of specific heats,specific heat of constant pressure,
gas constant,and nonpressure biased entropy and enthalpy.

AARARARAARNRRARRNA RN AR RARAARRARRRRARARA R IR IR AR R AR R AR AR AR A AR ARk hhk
A RAAARRARRNARARAAR AR AN AR R R AR AR AN A AR AR AR AN h A d AR hhhhhi

$999555948999
$$ AFQUIR $$
$959999599%8
This program is a quadratic convergence routine.It is a routine having
general application and is used to converge practically any function .

AARAARRRARKIANATKNARARARRARARAR AR AR ARAN AR AR A AR AN ARA AR AR AR AR A ARk dkh &
AR AR AR AR AN AR R AR R AR AR AR AAR RN AR AR AR RN R AN R A AR AR AR A AR A A bk hdhhdddd bk

$999995988%%

$$ CRITXX $%

$39999999599

This routine takes an input shape factor(ALAM)and looks up on a curve
the critical Reynolds number.

Uses subroutine SRCHX.

***********ﬁ**i*********ih**!**ﬁ*********i****il*i***ﬁ***********iii**
P R R O A g e Y Y 3 2322322222322 2SS RS2 220 2202 0 2 R S R B0 b

CERERR R AR AR R

$% INPUT VARIABLES $s

$S58555595555595999s5

NUMB t number of points in velocity profile curve(velocity versus
gurface distance curve).

XS, X 1 surface distance.

VS, UK t surface velocity.
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ALENTH : characteristic blade length.
TTZERO : totel temperature of free stream.
PTZERO : totel pressure of free stream.

UCRIT : sonic velocity of free stream.
AR t average speclfic heat ratio.
UIN t free gstream velocity.

DIA t leading edge diameter.

DX ¢t integration interval.

PRINT : print interval.

***t*t****!ﬁ*itti**tk****tit*******k*ii**t*****ii*ﬁ*i******ii*****i***
***i*t*******iitii*ii*****l**tii******i*ﬁit*l**itit*!i*i***ik**ii*i***
$55595955555555%55959% :

$ OUTPUT VARIABLES $$
$355985855555559599958

MINAR

X :+ gurface distance.
ux t+ surface velocity.

T + static temperature of surface.

P t gtatic pressgure of surface.

VISK ' kinematfc viscosity.

DEL ¢+ laminar boundary layer thickness.
THETA : momentum leoss thickness.

DELSTR : boundary layer displacement thickness.
UDQVIS : characteristic surface Reynolds number.
TRMCRT : critical surface Reynolds number.

ALAM t velocity profile shape factor.

H t universal function.

DELT t thermal boundary layer thickness.

HL : convection heat-transfer coefflcient.
TAD t adiabatic wall temperature.

TURBULENT

X : surface distance.

ux : surface velocity.

T + static temperature of surface.

P : static pressure of surface.
VISK kinemat?c vigcosity.

TAD + adiabatic wall temperature.

CF2 1 surface friction coefficlient.

THETA : momentum loss thickness.

PN + Prandtl number.

RHO : density.

TUQV + Reynolds number agsociated with momentum loss thickness.
HX : turbulent heat-transfer coefficient.

***ﬁ*i*i**i***iﬁii*#!*ilﬁ*i***i!***iii*ii**i*;*!*i*iﬁ*********i**ii**i
i**i*ﬁii*****ﬁﬁ*ﬁl**!*****ii****i*ii*******i!**l*******i**ﬁ!i*ii******

OOUOODOOOUOOOODOLOOOOOOOOHOROOOOOONRO
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OPEN(6,FILE="Q.0UT',STATUS="NEW')
CALL READIN{XMAX)
ALENTH=0.4755
TTZERO=1431
PTZERO=135.58
UCRIT=1666.22
AK=1.3
UIN=303.
ARC=,583417
DIA«Q.0767
DX=1,E~5
PRINT=1,E-2
R=DIA/2.
AINT=0.0
BINT=0.0
VISKI=0.0
URATI1=0.0
URATI2=0.0
X=0.0

UX5=0.0

I=0

IBIN=1

ALAMO=7.053
RARA AR AR R AR ARAR AR R RN AR AR AR R AR R AN AR A AR RN RN AR AR AR RN AR AR R AR R Ak ARk Ak

ARAANRRANRARRAR R AN RS kAR AR RN RRARRARAR AR RA AR AR A
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AARRRRARRRAR RN R AR A AR R AN AR A R AR R ARRA R R AN R AR AR A AR AN R AN AR AR AR R A Ak

X=ZERO CALCULATIONS

DXB=DX
ALAM=7.0529

X=0.0

CALL CURVE(X,DXB,UX,UPX,UPPX)
T=TTZERO

P=PTZERO

CALL PROPER(T,P,AMU,RHO,PN,CP)
VISK=AMU/RHO

VISKO=VISK
CFL=1,328/8QRT{UIN*ALENTH/VISEKO)
DEL=SQRT (ALAM*VISK/UPX)
THETA=0.11746*DEL
DELSTR=(2.554-0.0709*ALAM)*THETA
CALL PRAN(PN,CONST1)

AND=2 . *CONST1+SQ0RT{UIN*DIA/VISK)
DELT=2.*DIA/AND

RAT=DEL/DELT
H=0.3-0.3*RAT+0.13333%(RAT**2,)~-0. 0214286*(RAT**4 )
£4+0,.005555%(RAT#**5.)
HLm=({2.*CP*AMU/({PN*DELT)*4.6275)
TAD=T

HO=H

DELO=~DEL

END OF X~ZERO CALCULATIONS
XARC=X/ARC

IPS=PRINT/DX+DX
UX55=UX*+5,
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11

14

WRITE(6,;100)X,UX,T
WRITE(6,101)P,VISK,THETA
WRITE(6,102)DEL,DELSTR,UDQVIS
WRITE(6,103) TRMCRT,ALAN, PN
PRINT*,X,HL,DEL, THETA,DELT
WRITE(6,104)DELTA,DELT,HL

WRITE(6,105)TAD
FORMAT( 8H X=,E}5.7,5X,78 UX=,E15.7,5X,7H T=,E15.7)
FORMAT( 8H pP=,E15.7,5X,70 VISE=,E15.7,5X,7H THETA=, E15.7)

FORMAT(OH DEL=,E15.7,5X, THDELSTR=,£15.7,5X, THUDQVIS=,E15.7)
FORMAT(8H TRMCRT=,E15.7,5X,7H ALAM=,E15.7,5X,7H PN=,E15.7)
FORMAT(BH DELTA=,E15.7,5X,7H DELT- F15.7,5X,7H HL=,E15.7}
FORMAT(8H TAD-,EIS 7)

I1P=0

UXS=UX#*5,

I=I+1

AlI=]

X=AI*DX

IP=IP+1

CALL CURVE(X,DX,UX,UPX,UPPX)
IF(UX.LT.6.0}G0 TO 11

UXSmUX*#5,
T=TTZERO*(1.-({AR-1.)/(AK+1.) ) *{UX/UCRIT)**2.)
P=PTZERO*{ (T/TTZERO) **(AK/(AK-1.)))
CALL PROPER(T,P,AMU,RHQ,PN,CP)
VISK=AMU/RHO

CALL PRAN({PN,CONSTL)

AND=2, *CONST1#SQRT{UIN*DIA/VISK)
DELTO=2.#DIA/AND

IH=1

DELO2=ALAMO*VISK/UPX
TERM1=DELO2AUX**6, /(34.*VISK)
UEINT1=0,0

DTUH2=0.0

DELAS=DELD

DEL2AS=DELAS*DELAS

GO TO 2

ImI+]l

Al=I

X=AI*DX

IP=1IP+1

CONTINUE

UX58=UX5

UXS=UX

CALL CURVE(X,DX,UX,UPX,UPPX)
UXS=UX*#5,
T=TTZERO*{1.-({AK-1.)/{AK+1.))*(UX/UCRIT)**2.)
P=PTZERO*( (T/TTZERO}**(AK/(AK-1.)))
CALL PROPER{T,P,AMU,RHO,PN,CP)
VISK=AMU/RHO

VISKI=VISKI+VISK*DX

TERM1=TERM1+( (UX5+UX5S8) /2. )*DX
Cm34,.4VISK/( (UXS*UX4UXS5S*UXS}/2.)
DEL2A=DEL2AS+C*{ (UX5+UX55}/2. ) *DX
DELA=SQRT{DEL2A)

DEL2E=C*TERM1

DELE=SQRT{DEL2E)

DEL=-DELE

DEL2=DELZE

THETA=0.11746*DEL

162

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Cc
C
C

c

50

ALAM=DEL2*UPX/VISK
DELSTR=(2.554-0.0709*ALAM) *THETA
UDQVIS=UX*DELSTR/VISK

CALL CRITCL {ALAM,TRMCRT)
IF(UDQVIS.GE.TRMCRT}GO TO 190

GO TO (50,99),IH

USED FIRST TIME ONLY

IH=2

Xl=X

CALL CURVE(X1,DX,UX1,UPX1,UPPX1)
Z1=PN*(DELO*UX1*HQ)*%2, /(4 .*VISK)
Z2=Z14+(HO* (UX1+UX)/2.)*DX
ZZ1=DELQ**2 ,*UX1#%6, /{34, *VISK)
Z2Z22mZZ14+((UX1**5 JUXA*5 }/2.)*DX
HD2=0Q,11765*UX**4 *Z2 /{PN*ZZ2)
CALL DTFRM(HD2,DELTA2)
HG=HD2/(DELTA2#*2,)
AQB=HD2/{{0.11765/PN)*UX**4. )
CQD=(HD2/((0.11765/PN) *UX**4 ) )}*HG
TERMC=UX*HG*DX

TERMD=C/CQD

TERMB=TERMD

TERMA=R/AQB

GO TO 108

C USED ALL BUT FIRST TIME

Cc

99

108

500

CONTINUE

TERMA=TERMA+( (UX+UXS) /2. )*DX
TERMB=TERMB+( (UX**5_4UXS**5 ) /2, )+DX
D2HG=(0.11765/PN)*UX**4 , *TERMA/TERMB
CALL DTFRM{D2HG,DELTAL)
HG=D2HG/{DELTAL*#*2 )

TERMC=TERMC+{ (UX+UXS)/2.)*( (HG+HS)/2.)*DX

TERMD=TERMB

D2HG1=(0.11765/PN)*UX#*%4 *TERMC/(TERMD*HG)

CALL DTFRM{DZHG1,DELTA2)

H=HG

DELTA~DELTA2

DELT=DELTA*DEL
HL={2.*CP*AMU/(PN*DELT)*4.62725)
TAD=T+{TTZERO=T) *SQRT (PN}
DXL=DX/ALENTH

AINT=AINT+( ( (UX/UIN}**5 4+ (UXS/UIN)**5,)/2.) *DXL

Cl8TRe{(CFL/2. }*SQRT{AINT))**]1.25
UXS=UX

HS=H

IF(IP.NE.IPS)GO TO 1

1P=0

XARC=X/ARC
WRITE(6,100)X,UX,T
WRITE(6,101)P,VISK, THETA
WRITE(6,102)DEL,DELSTR,UDQVIS
WRITE{6,103) TRMCRT,ALAM, PN
WRITE(6,104)DELTA, DELT, HL
PRINT*, X, HL,DEL, THETA, DELT
WRITE(6,105)TAD

GO TO 1
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All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



164

C AARARRR AR R AR A AR AR A AR AR AR ARAR R AR AR AR A ARRAR AR AR AR Ak h kAR AR AR AR
C RAANRRARARAARARKARAAR RN ' RARRRAR NN RIRARIRR AR R RIS hh R
C ARRARRARRAARARAARARRARAARAY  BND OF LAMINAR @ AAARAAARAA AR RAhA kb bt hhAdik
C ARANARARRARANRARARAANRR AR RAhhAhh kAR A Rh kR hh bk
C ARRANRRA AR AR AR AR R R AR AR AN AR AR AR AR R A AR AR AR AR AR RANARAAR RN R AR AR AR Ak
19¢ WRITE(6,211)X
XARC=X/ARC
211 FORMAT{1H 16HTRANSITION AT X=,E15.7)
WRITE(6,100)X,UX,T

WRITE(6,101)P,VISK,THETA
WRITE(6,102)DEL,DELSTR,UDQVIS
WRITE(6,103) TRMCRT,ALAM, PN
WRITE(6,104)DELTA,DELT, HL
PRINT*, 'TRANSITION’
PRINT*,X,HL,DEL, THETA,DELT
WRITE(6,105)TAD :

XT=X

VISRA=VISKI/XT

C1lSTRS=C1STR
KRR AR NARNARRARA R RN R AR AN AR AN AR AR AR AR R R AR AR AR AR AR AN AR R AR AR R ARh

AARNRAARRNRARARRR AN AR AR AR hhARRhkhhhhhhhhhhhhdhhh
KARNRARARARANARARANARNRSN  START OF TURBULENT  RAarmanwrdhhhhhkhhhhhhhhk
RARARNRARARREARAARRAR AR KR IAAAR AR AR AR AR IR R R R AR AR
ARAANR IR AR AN R AR AR R R AR RN RAR AR A RN R AN R AR AN A AR AR AR ARk h kA AR ARk &

IF(IP.EQ.IPS)1P=0
800 I=X+1

Al=1

UXS=UX

X=AI*DX

IP=IP+1

CALL CURVE(X,DX,UX,UPX,UPPX)

T=TTZERO*(1.-( (AR-1.)/(AK+1.) )} *(UX/UCRIT}**2,)

P=PTZERO*{ (T/TTZERO)**(AK/(AK-1.)))

CALL PROPER(T,P,AMU,RHO,PN,CP)

V1ISK=AMU/RHO

TAD=T+{TTZERO-T) *(PN**(1./3.))

BINT=BINT+( ((UX/UIN)*#3 54+(UXS/UIN)**3,5)/2.)*DXL

CF2»0.016/( (UIN*ALENTH/VISK)**0,25)

THQL= (UX/UIN)*#%(~3.)*((C1STRS+CF2*BINT)**0.8)

THETA=THQL*ALENTH

TUQV=THETA*UX/VISK

TAUQDU=0,0128/(TUQV*%0,25)

HX=( TAUQDU*RHO*CPAUX*(3600./7768.)/
1(1.45.*SQRT(TAUQDU) *{ (PN-1.)
24ALOG(L1.+(5./6.)*{PN-1.)))))}

IF(IP.EQ.IPS) GO TO 900

825 IF(X.LT.XMAX) GO TO 800

aaoaaaO

1111 sToOP

900 1P=D
XARC=X/ARC
WRITE(6,100)X,UX,T

WRITE(6,101)P,VISK,THETA

WRITE(6,901)CF2, RHO, TUQV

PRINT* ,X,HX,CF2,THETA, TUQV

WRITE(6,902)PN, TAD,HX
901 FORMAT(8H CF2=,E15,7,5X,7H RHO=,E15,.7,5X,7H TUQV=,El5.7)
902 FORMAT(8H PN=,E15.7,5X,7H TAD=,E15.7,5X,7H HX=,E15.7)

GO TO B25
C *AARARARARRRRARRAARN AR ARRARARAN R AR AR d R kA AR AR AR AR A A AR AR A AR A AR

C *ARKARANRAARIAARAA I AR N hhk LXE AR XSRS R EREESELEES
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SUBROUTINE READIN({XMAX)
DIMENSION X8{200),vS(200) ,
OPEN(3,FPILE="N.QUT’,STATUS='QLD')
READ(3,100)NUMB
OPEN(4,FILE='v1,0UT’,STATUS="0OLD"’)
READ(4,#*)(XS(1),vS{(I),I=1,NUMB)
100 FORMAT(13)
C 101 FORMAT(2F20.0)
DO 1 I=1,NUMB
Tw=I
1 XS{T)=XS{1)/12.
c1 XS({T)=X%S(1)
XMAX=XS(T)
RETURN
ENTRY CURVE(X,DX,UE,UEP,UEPP)
X1=X+DX
A2=X1+DX
R=0
NPT=4
UE~TLOOK(X,X8,VS,NUMB,NPT,K, ILAST)
UE1=TLOOR{X!,XS,VS,NUMB,NPT,K,ILAST)
UE2=TLOOK({X2,XS,VS,NUMB,NFPT,K,ILAST)
UEP=( {UE1-UE)/(X1-X))
UEPX={ {UE2-UE1l)/(X2-X1})
UEPP={ (UEPX~UEP)}/(X1-X))
RETURN
END

C
C RARARARARAARR AR A AR AR AR AR N AR AR AR AARAR AR AR AR R R AR AR AR A A kAt hhh b

C RAAFRARR AR ANRA AR RAR A AR AR RAR AR R A AR AN A AR AR AR AR AR AR A Ak A h R

C

SUBROUTINE DTFRM(ANS,DEL)

DIMENSION Q(9)

Q(2)=0.0

Q(3)=0.0

AJ=50,

TOL=0.0001

DIR=1.01

TRY=1.5
1 TRY2=TRY*TRY

TERM=0.3*TRY2-0.3+#TRY+0.13333-(0.0214286/TRY2}+

&0.005555/( TRY2*TRY) ‘

CALL AFQUIR(Q,TRY,TERM,ANS,AJ,TOL,DIR,ANEW, ICON)

IF(ICON.EQ.3)}GO TO §

IF(ICON.EQ.2)}GO TO 10

TRY=ANEW

Go TO 1
5 WRITE(6,100)ANS
100 FORMAT(1HO,19HERROR IN DELTA,ANS=,E15.7)
10 DEL=TRY

RETURN

END
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SUBROUTINE PRAN(P,C) -

DIMENSION PX{9),CX(9}

DATA (PX({I),I=1,9},0.6,0.7,0.8,0.9,1.0,1.
DATA (CX(1),1=1,9)/0.466,0.495,0.521,0.54
£0.592,1.18,1.34;.1.54/

CALL SRCHX(P,PX(1},9,0,IL,ATERM)
C=CX(IL)+ATERM*{CX(IL+1)-CX(1IL))

RETURN

END

1,7.,10.,15./
6,0.

ARERARRAARARARARARNRAARANRRNR R AR AR AARA AN RN ARRN AR A AR AARAR AR AR AR AR oAb Ak
RARARRARRARARNRANRNARARRARANARRARAANARNARRA AR AN AR AN kA hhhh A hhhddhk

SUBROUTINE PROPER(T,F,AMU,RHO,PN,CP)

DIMENSION RTS(31),HT6(31)
5 TEMPERATURE ({(INDEPENDENT VARIABLE TABLE)

NUMBER OF POINTS 31

DATA (HT5(K),K=1,31)/450.,540.,630,,720.,810.,900,,990.,1080.,1170
&.,1260.,1350.,1440.,1%30.,1620.,1710.,1800.,1980.,2160.,2340,,2520
&.,2700.,2880.,3060.,3240.,3420.,3600.,3780.,3960.,4240.,4320.,4620
&./
6 PRANDTLE NUMBER VERSUS TEMPERATURE

INDEPENDENT VECTOR AT (5)

LENGTH 31

NPR FOR DRY AIR

DATA (HT6(K),K=1,31)/.722,.708,.697,.689,.683,.68,.68,.68,.682,.68

£4,.686,.689,.692,.696,.699,.702,.706,.714,.722,.726,.734,.741,.749

&,.759,.767,.783,.803,.831,.863,.916,.972/

NP=4

NT=31

KL=0
T=DEGREES RANKIN
P=POUNDS/SQ.1IN.
AMU=POUNDS*SEC./SQ.FT.
RHO=POUNDS*SEC. 8Q./FT.#**4
CP=FT.5Q./(SEC. SQ. DEGREE RANKIN}
TK=BTU/(HR FT DEGREE RANKIN)
PN=UNITLESS
VIS=POUNDS/HR FT
T3=DEGREES EELVIN
RX=BTU/{ POUND DEGREE RANKIN)
CPX=BTU/{ POUND DEGREE RANKIN)

CALL PROCOM(O0.0,T,X1,X2,CPX,RX,X3,Xx4)

T3=0.555556*T

VIS=0.00353*T3**1 .5/(T3+110.4)

TK=0.6325*SQRT(T3)*0.00248,/(1.4245.4%10.**(-12./T3)/T3)

PN=TLOOR{T,HT5,HT6,NT,NP,KL, ILAST)

CP~CPX#32.1740494778.26

AMU=V1IS/(3600.%32.174049)

RHO={P*144./(RX*778.26+T})/32.174049

RETURN

END

2SS RN ELEREENEXEEREERESEEIRSSERYERRESEEEEEESS SRR S RS RR R SR
L E2 2R AR R R RERREERESEERRRR RS RSERSES)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



aanaaanan o

C

aAaaaaa aaqoaaa

167

FUNCTION TLOOK(P,PT,QT,NT,NP,K,ILAST)
PT IS TABLE OF INDEPENDENT VARIABLES
QT IS TABLE OF DEPENDENT VARIABLES
NT=SIZE OF ABOVE TABLES
NP=NUMBER OF POINTS FOR INTERPOLATION
K=0,LIMIT OUTPUT TO BOQUNDARY OF TABLE
K=1,EXTRAPOLATE FOR VALUES OQUTSIDE TABLE
DIMENSION PT{1),Q7T(1),XT(10),YT(10)
IF(ILAST.LE.Q)ILAST=]
I=ILAST+1
Ir{PT(1)-PT{NT))4,15,18
TABLE PT IS IN ASCENDING ORDER
4 IF{PT{1).GE.P.AND.PT{ILAST).LE.P)GO TO B
DO 5§ Iwl,NT
IF{P.LE.PT{I)}GO TO 8
5 CONTINUE
ILAST=NT~1
6 IF(R.GE.1)GO TO 7
TLOOK=QT({NT)
RETURN
7 IL=NT-NP+1
. GO TO 20
8 IF(1.6T.1)G0 TO 10
ILAST=1
IF(K.GE.1)GO TO 9
TLOOE=QT(1)
RETURN
9 IL=1
GO TO 20
10 ILAST=~I-1
IL=I-NP/2
G0 TO 20
TABLE PT IS IN DESCENDING ORDER
15 IF(PT(I).LE.P.AND.PT{ILAST).GE.P)GO TO 8
DO 16 I=1,NT
IF(P.GE.PT(1))GO TO B
16 CONTINUE
GO TO 6
20 IF{IL.LT.1)IL=1
IF(IL.GT.NT-NP+1)IL=NT-NP+1
DO 21 J=1,NP
LwIL4+J-1
XT(J)=PT(L)
21 YT(J)=QT(L)
CALL LAGRNG(P,¥Y,XT,¥T,NP)
TLOOR=Y
RETURN
END

AAAA AR AR AR AN AR A AR RA RN R AN R AR AR RA A RN Ak ANR AR AR A AR AR AR AR AR AR A AR AR
AARRRAARARRR AR ARAARRA AR AR AR AR R AR AN AR AR AR R AR R A A AR A AR AR A ARk ke hhhkd ek

SUBROUTINE LAGRNG(X,Y,XT,YT,N)
THIS ROUTINE USES A LAGRANGIAN POLYNOMIAL BASED ON N TABULAR
POINTS TO INTERPOLATE Y AS A FUNCTION OF X IN A TWO DIMENSIONAL
TABLE.

DIMENSION XT(1),¥YT(1)
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IF(X.EQ.XT(I))GO TO 5

CONTINUE

Ll=l

L2=N-1 :
S={XT{N}-XT(1))/ABS(XT(N)-XT(1))
DO 7 1=L1,L2

IF(ABS(XT(I)-XT(I+1)).GT. .001*ABS(XT(I)))GO TO 7

IF((X-XT(I))*S.LE, 0.)G0 TO 8
LleI+l

GO TO 6

L2wuI

GO TO 9

CONTINUE

L2=N

Y-o.

DO 3 I=L1,L2

Zml,

DO 2 J=L1,L2

IF(J.EQ.I)GO TO 2
Z2eZ*(X-XT(J))}/(XT(1)-XT(J))
CONTINUE

Y=Y+Z*YT(I)

RETURN

Y=YT(1I)

RETURN

END

SUBROUTINE SRCHX(V,VT,N,KEX,IL,C)

THIS ROUTINE LOCATES V IN TABLE VT
IF REX=0,LIMIT OUTPUT TO TABLE BOUNDARY
IF KEX=1,EXTRAPOLATE IF V IS OUTSIDE TABLE
DIMENSION VT(N)
IF(VT{2).LT.VT{1))GO TO 6
TABLE VT IS IN ASCENDING -ORDER
DO 1 I=1,N
IFr(v-vr{1)) 2,2,1
CONTINUE
IL=N-1
IF(KEX.EQ.1) GO TO 3
C-I L]
RETURN
IL=I-1
IF(I.EQ.1) GO TO 4
Cm(V-VT(IL))/{VT(IL+1}~VT(IL))
RETURN
IL=1
IF(REX.EQ.1} GO TO 3
C=0.
RETURN
TABLE VT 1S IN DESCENDING ORDER
DO 7 I=1,N
IF{V-vr{1}) 7.,2,2
CONTINUE
GO TO 15
END
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SUBROUTINE PROCOM{FARX,TEX,CSEX,AKEX,CPEX,REX,SEX,HEX)
IF(TEX-300,)2,3,3

WRITE(1,102)

FORMAT(1H 35HPRQCOM INPUT TEMPERATURE BELOW 300.)
RETURN

IF(TEX-4500.)5,5,4

WRITE(1,103)

FORHAT(IH 36HPROCOM INPUT TEHPERATURE ABOVE 4500.)
RETURN

IF({FARX)6,7

WRITE(1, 104)

FORHAg(IH 38HPROCOM INPUT FUEL-AIR RATIO BELOW ZERO)
FARX=0,0

AIR PATRH

7

8
9

CPA=({((({(1.0115540E-25+TEX-1.4526770E-21)*TEX
&+7.6215767E~18)*TEX-1.5128259E-14)*TEX-6.7178376E-12)
&*TEX+6.5519486E-08)*TEX-5.1536879E~05 )} *TEX+2.5020051E~-01

HEA=((({(((1.2644425E-26*TEX-2.0752522~22)*TEX
£+1.2702630E~18)*TEX-3,0256518E-15)*TEX~1.6794594E-12)*TEX
£+2,.1839826E~08)*TEX-2.5768440E~05)}*TEX+2.5020051E-01)*TEX
&-1.7558886E+00

BEA=+2,5020051E-014ALOG(TEX)+{{{(({1.4450767E-26+*TEX
&-2,.4211288E-22)*TEX+1.5243153E-18B)*TEX-3.7820648E~-15)*TEX
&=-2.2392790E~12)*TEX+3.2759743E~08)*TEX-5.1576B79E-05) *TEX
&+4.5432300E-02

IF(FARX)200,200,8

FUEL/AIR PATH

IF(FARX-.067623)10,10,9

WRITE(1,101) -

101 FORMAT(1H 63HINPUT FUEL~AIR RATIO ABOVE LIMITS, IT HAS BEEN RESET

10

200

C

&TO 0.067623)

FARX=0.067623
CPE=({(({(7.2678710E-25+TEX-1.3335668E-20)*TEX
&+1.0212913F-16)*TEX-4.2051104E-13)*TEX+9.9686793FE-10)*TEX
&-1.3771901E-06)*TEX+1.2258630B-03 )} *TEX+7,3016638E-02
HEF=({{{({((9.0848388E-26+TEX-1.9050949E-21)*TEX
&+1.7021525E-17)*TEX-8.4102208E~-14) *TEX+2.4921698E-10)*TEX
&-4.5906332E-07)*TEX+6.1293150E-04) *TEX+7.3816638E-02)
S*TEX+3,.05B1S30E+01
SEF=+7.3816638F~02*ALOG(TEX)+({(({(1.0382670E-25*TEX
£-2.2226118E~21)#TEX+2.04250826E-17 ) *TEX-1.0512776E-13)*TEX
£43.3228928E-10)*TEX-6.8859505E-07 ) *TEX+1.22586302-03)*TEX
5+6.483398E-01

CPEX=(CPA+FARX*CPF)/(1.+FARX)

HEX=(HEA+FARX*HEF) /(1.+4FARX)

SEX=(SEA+FARX*SEFr)/(1.+FARX)

AMW=28.97-.9461864FARX

REX=1.986375/AMW

AKEX=CPEX/(CPEX-REX)

CSEX=SQRT(ARKEX*REX*TEX*25031.37)

RETURN
.END

C ARARARAAA A AN AR AR R AR AR AN R AR RAN A AR RAR N AR A AR A AR A AR A AR A AN AR A AA R AR AR A AR A Ad
C ARk A A A R R AR R AR AR A AR NN AR A AR A A A AR AR A AR A AR AR AR A AR A AR AR N A A AR ARA RN

C
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SUBROUTINE AFQUIR(X,AIND,DEPEND,ANS,AJ,TOL,DIR,ANEW, ICON)

DIMENSION X(9)

X(1)=NAME OF ARRAY TO USE
AIND=INDEPENDANT VARIABLE
DEPEND=DEPENDANT VARIABLE
ANS=ANSWER UPON WHICH TO CONVERGE
AJ=MAX NUMBER OF TRYS :
TOL=PERCENT TOLERANCE FOR CONVERGENCE
DIR=DIRECTION AND PERCENTAGE FOR FIRST GUESS
ANEW=CALCULATED VALUE OF NEXT TRY AT INDEPENDANT VARIABLE
ICON=CONTROL =1 GO THRU LOOP AGAIN
=2 YOU HAVE REACHED THE ANSWER
=3 COUNTER HAS HIT LIMITS
X(2)=COUNTER STORAGE
X(3)=CHOOSES METHOD OF CONVERGENCE
X(4)=THIRD DEPENDANT VARIABLE
X(5)=THIRD INDEPENDANT VARIABLE
X(6)=SECOND DEPENDANT VARIABLE
X(7)=5ECOND INDEPENDANT VARIABLE
X(8)=FIRST DEPENDANT VARIABLE
X(9)=FIRST INDEPENDANT VARIABLE
X(3) MUST BE ZERO UPON FIRST ENTRY TO ROUTINE

Y=0.
IF(ANS)1,2,1
DEP=DEPEND-ANS
TOLANS=TOL*ANS
GO TO 3

. DEP=DEPEND
TOLANS=TOL
IF(ABS(DEP}-TOLANS)G,5,4
Ir{x(2)-AJ})8,8,7
ANEWeAIND
X(2)=0.
ICON=2
RETURN
ANEW=Y
X(2)=X(2)+1.
ICON=1
RETURN
ANEW=Y
X(2)}=0.
ICON=3
RETURN
IFr(x{3))9,9,12

C ****FIRST GUESS USING DIR

9

10
11

12

X(3)=1.

X{(8)=DEP

X{9)=RIND
IF(AIND)10,11,10
Y=DIR*AIND

GO TO 6

Y«DIR

GO TO 6
IF(X(3)-1.)13,13,16

C **#*] TNEAR GUESS

13

X(3)=2.
X{(6)=DEP
X{7)=AIND

170
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14
15

IF(X(8)-%{6))14,9,14
1F{X(9)~-X(7)})15,9,15

A={X(9)-X{7))/(X(8)-X(6))

YeX(9)-A*X({8)

IF{ARS(10.#X(9))-ABS(Y))}9,9,6

C ***+QUADRATIC GUESS

16

17
18
19
20
21

22

23
24

240
241

242
243
244
245
246
247
248
249
25

26
27

270

28
29

30
31

X(4)=DEP
X(5)=AIND
IF{X(7)-X{5))18,17,18
IF{X(6)-%(4))13,9,13
IF{X(6)-X{4))19,13,19
IF({X(9)-X(5))23,20,23
1r{x(8)-x(4))21,22,21
X(9)wX(7)

X(8)=X(6)

GO TO 13

X(9)=xX(7)

X(8)=X(6)

X({3)=1.
IF(X({9))10,11,10
IF(X(8)-X(4))24,21,24

Fm{X(6)-X(4))/(X(7)-X{5))
A=(X(8)-X(4)-F*(X(9)-X(5)))/({X(9)-X{7})*(X(9)-X(5)))

B=F-A*(X{5)+X(7)}
C=X(4)+X{5)}*(A*X(7)~F)
IF(A)242,240, 242
IF(B)241,7,241
Y=-~C/B

GO TO 37
1F(B)247,243,247
IF(C)245,244,245
¥Y=0.

GO TO 37

G=-C/A

IF{G)7,7,246
Y=SQRT(G)
YY=-SQRT(G)

GO TO 270
Ir{C)249,240,249
Y=-B/A

YY=0.

GO TO 270

D=d  *AAC/BR%2
IF(1.-D)13,25,26
Yu-B/(2.%A)

GO TO 37
E=8QRT(1.-D)
Y={-B/{2.*A))*(1.+E)
YY:(-B/(Z.*A))*(I.-E)
Jm=

DEPMIN=ABS(X(4))

DO 29 1=6,8,2

IF{DEPMIN-ABS(X{1)))29,29,28

LD
DEPMIN=ABS(X(I))
CONTINUE

EmJ+]

IF({X(R)-Y)*(X(K)-YY)}32,32,30
IF(ABS{X(K)-Y)-ABS(X{K)-¥Y))37,37,31

Y=YY

i
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32
33
34
35

36
37

c

co TO 37

IF(J-6)33,34,

JImJ+2

KE=K+2

GO TO 35

JI=J-2

KK=K-2
SLOPE=(X({KEK)-X{K))/(X{(JJ})-X(J})
IF(SLOPE*X{J)*(X(K)-Y))36,36,37
YeYY

X(9)=X(7)

X(8)=X(6)

X(7)=X{(5)

R(6)=X(4)

GO TO 6

END

172
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C

SUBROUTINE CRITCL{ALAM,TERM)
DIMENSION ALMTAB(13),TRMTAB{13}

DATA(ALMTAB(1),Iw1,13)/-6.,-5.,-4.,-3.,-2.,-1.,0.,

€l.,2.,3.,4.,5.,6./

DATA(TRMTAB{I}),I~-1,13)/0.,120.,138,,175.,250.,375.,
&645.,1125,.,2000.,3500.,5500,.,8000,,10000./ :
CALL SRCHX(ALAM,ALMTAB(1),13,0,1L,C)
TERM=TRMTAB{IL)+C*{TRMTAB(IL+1)-TRMTAB(IL))

RETURN
END
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APPENDIX D
Experimental data base
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Static pressure distribution
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Normalized

Axial
distance

Surface

"Heat transfer coefficient d_istribution
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